81,837 research outputs found

    Sequential and Parallel Algorithms for Mixed Packing and Covering

    Full text link
    Mixed packing and covering problems are problems that can be formulated as linear programs using only non-negative coefficients. Examples include multicommodity network flow, the Held-Karp lower bound on TSP, fractional relaxations of set cover, bin-packing, knapsack, scheduling problems, minimum-weight triangulation, etc. This paper gives approximation algorithms for the general class of problems. The sequential algorithm is a simple greedy algorithm that can be implemented to find an epsilon-approximate solution in O(epsilon^-2 log m) linear-time iterations. The parallel algorithm does comparable work but finishes in polylogarithmic time. The results generalize previous work on pure packing and covering (the special case when the constraints are all "less-than" or all "greater-than") by Michael Luby and Noam Nisan (1993) and Naveen Garg and Jochen Konemann (1998)

    Analysis of the Min-Sum Algorithm for Packing and Covering Problems via Linear Programming

    Full text link
    Message-passing algorithms based on belief-propagation (BP) are successfully used in many applications including decoding error correcting codes and solving constraint satisfaction and inference problems. BP-based algorithms operate over graph representations, called factor graphs, that are used to model the input. Although in many cases BP-based algorithms exhibit impressive empirical results, not much has been proved when the factor graphs have cycles. This work deals with packing and covering integer programs in which the constraint matrix is zero-one, the constraint vector is integral, and the variables are subject to box constraints. We study the performance of the min-sum algorithm when applied to the corresponding factor graph models of packing and covering LPs. We compare the solutions computed by the min-sum algorithm for packing and covering problems to the optimal solutions of the corresponding linear programming (LP) relaxations. In particular, we prove that if the LP has an optimal fractional solution, then for each fractional component, the min-sum algorithm either computes multiple solutions or the solution oscillates below and above the fraction. This implies that the min-sum algorithm computes the optimal integral solution only if the LP has a unique optimal solution that is integral. The converse is not true in general. For a special case of packing and covering problems, we prove that if the LP has a unique optimal solution that is integral and on the boundary of the box constraints, then the min-sum algorithm computes the optimal solution in pseudo-polynomial time. Our results unify and extend recent results for the maximum weight matching problem by [Sanghavi et al.,'2011] and [Bayati et al., 2011] and for the maximum weight independent set problem [Sanghavi et al.'2009]

    Nearly Linear-Work Algorithms for Mixed Packing/Covering and Facility-Location Linear Programs

    Full text link
    We describe the first nearly linear-time approximation algorithms for explicitly given mixed packing/covering linear programs, and for (non-metric) fractional facility location. We also describe the first parallel algorithms requiring only near-linear total work and finishing in polylog time. The algorithms compute (1+ϵ)(1+\epsilon)-approximate solutions in time (and work) O(N/ϵ2)O^*(N/\epsilon^2), where NN is the number of non-zeros in the constraint matrix. For facility location, NN is the number of eligible client/facility pairs

    Packing and covering with balls on Busemann surfaces

    Full text link
    In this note we prove that for any compact subset SS of a Busemann surface (S,d)({\mathcal S},d) (in particular, for any simple polygon with geodesic metric) and any positive number δ\delta, the minimum number of closed balls of radius δ\delta with centers at S\mathcal S and covering the set SS is at most 19 times the maximum number of disjoint closed balls of radius δ\delta centered at points of SS: ν(S)ρ(S)19ν(S)\nu(S) \le \rho(S) \le 19\nu(S), where ρ(S)\rho(S) and ν(S)\nu(S) are the covering and the packing numbers of SS by δ{\delta}-balls.Comment: 27 page

    Online Mixed Packing and Covering

    Full text link
    In many problems, the inputs arrive over time, and must be dealt with irrevocably when they arrive. Such problems are online problems. A common method of solving online problems is to first solve the corresponding linear program, and then round the fractional solution online to obtain an integral solution. We give algorithms for solving linear programs with mixed packing and covering constraints online. We first consider mixed packing and covering linear programs, where packing constraints are given offline and covering constraints are received online. The objective is to minimize the maximum multiplicative factor by which any packing constraint is violated, while satisfying the covering constraints. No prior sublinear competitive algorithms are known for this problem. We give the first such --- a polylogarithmic-competitive algorithm for solving mixed packing and covering linear programs online. We also show a nearly tight lower bound. Our techniques for the upper bound use an exponential penalty function in conjunction with multiplicative updates. While exponential penalty functions are used previously to solve linear programs offline approximately, offline algorithms know the constraints beforehand and can optimize greedily. In contrast, when constraints arrive online, updates need to be more complex. We apply our techniques to solve two online fixed-charge problems with congestion. These problems are motivated by applications in machine scheduling and facility location. The linear program for these problems is more complicated than mixed packing and covering, and presents unique challenges. We show that our techniques combined with a randomized rounding procedure give polylogarithmic-competitive integral solutions. These problems generalize online set-cover, for which there is a polylogarithmic lower bound. Hence, our results are close to tight

    Online Bin Covering: Expectations vs. Guarantees

    Full text link
    Bin covering is a dual version of classic bin packing. Thus, the goal is to cover as many bins as possible, where covering a bin means packing items of total size at least one in the bin. For online bin covering, competitive analysis fails to distinguish between most algorithms of interest; all "reasonable" algorithms have a competitive ratio of 1/2. Thus, in order to get a better understanding of the combinatorial difficulties in solving this problem, we turn to other performance measures, namely relative worst order, random order, and max/max analysis, as well as analyzing input with restricted or uniformly distributed item sizes. In this way, our study also supplements the ongoing systematic studies of the relative strengths of various performance measures. Two classic algorithms for online bin packing that have natural dual versions are Harmonic and Next-Fit. Even though the algorithms are quite different in nature, the dual versions are not separated by competitive analysis. We make the case that when guarantees are needed, even under restricted input sequences, dual Harmonic is preferable. In addition, we establish quite robust theoretical results showing that if items come from a uniform distribution or even if just the ordering of items is uniformly random, then dual Next-Fit is the right choice.Comment: IMADA-preprint-c

    A study on exponential-size neighborhoods for the bin packing problem with conflicts

    Full text link
    We propose an iterated local search based on several classes of local and large neighborhoods for the bin packing problem with conflicts. This problem, which combines the characteristics of both bin packing and vertex coloring, arises in various application contexts such as logistics and transportation, timetabling, and resource allocation for cloud computing. We introduce O(1)O(1) evaluation procedures for classical local-search moves, polynomial variants of ejection chains and assignment neighborhoods, an adaptive set covering-based neighborhood, and finally a controlled use of 0-cost moves to further diversify the search. The overall method produces solutions of good quality on the classical benchmark instances and scales very well with an increase of problem size. Extensive computational experiments are conducted to measure the respective contribution of each proposed neighborhood. In particular, the 0-cost moves and the large neighborhood based on set covering contribute very significantly to the search. Several research perspectives are open in relation to possible hybridizations with other state-of-the-art mathematical programming heuristics for this problem.Comment: 26 pages, 8 figure
    corecore