1 research outputs found

    A deep learning solution for real-time human motion decoding in smart walkers

    Get PDF
    Dissertação de mestrado integrado em Engenharia Biomédica (especialização em Eletrónica Médica)The treatment of gait impairments has increasingly relied on rehabilitation therapies which benefit from the use of smart walkers. These walkers still lack advanced and seamless Human-Robot Interaction, which intuitively understands the intentions of human motion, empowering the user’s recovery state and autonomy, while reducing the physician’s effort. This dissertation proposes the development of a deep learning solution to tackle the human motion decoding problematic in smart walkers, using only lower body vision information from a camera stream, mounted on the WALKit Smart Walker, a smart walker prototype for rehabilitation purposes. Different deep learning frameworks were designed for early human motion recognition and detec tion. A custom acquisition method, including a smart walker’s automatic driving algorithm and labelling procedure, was also designed to enable further training and evaluation of the proposed frameworks. Facing a 4-class (stop, walk, turn right/left) classification problem, a deep learning convolutional model with an attention mechanism achieved the best results: an offline f1-score of 99.61%, an online calibrated instantaneous precision higher than 97% and a human-centred focus slightly higher than 30%. Promising results were attained for early human motion detection, with enhancements in the focus of the proposed architectures. However, further improvements are still needed to achieve a more reliable solution for integration in a smart walker’s control strategy, based in the human motion intentions.O tratamento de distúrbios da marcha tem apostado cada vez mais em terapias de reabilitação que beneficiam do uso de andarilhos inteligentes. Estes ainda carecem de uma Interação Humano-Robô avançada e eficaz, capaz de entender, intuitivamente, as intenções do movimento humano, fortalecendo a recuperação autónoma do paciente e reduzindo o esforço médico. Esta dissertação propõe o desenvolvimento de uma solução de aprendizagem para o problema de descodificação de movimento humano em andarilhos inteligentes, usando apenas vídeos recolhidos pelo WALKit Smart Walker, um protótipo de andarilho inteligente usado para reabilitação. Foram desenvolvidos algoritmos de aprendizagem para o reconhecimento e detecção precoces de movimento humano. Um método de aquisição personalizado, incluindo um algoritmo de condução e labelização automatizados, foi projetado para permitir o conseguinte treino e avaliação dos algoritmos propostos. Perante a classificação de 4 ações (parar, andar, virar à direita/esquerda), um modelo convolucional com um mecanismo de atenção alcançou os melhores resultados: f1-score offline de 99,61%, precisão instantânea calibrada online de superior a 97 % e um foco centrado no ser humano ligeiramente superior a 30%. Com esta dissertação alcançaram-se resultados promissores para a detecção precoce de movimento humano, com aprimoramentos no foco dos algoritmos propostos. No entanto, ainda são necessárias melhorias adicionais para alcançar uma solução mais robusta para a integração na estratégia de controlo de um andarilho inteligente, com base nas intenções de movimento do utilizador
    corecore