732 research outputs found

    On-line 3D active pose-graph SLAM based on key poses using graph topology and sub-maps

    Full text link
    © 2019 IEEE. In this paper, we present an on-line active pose-graph simultaneous localization and mapping (SLAM) frame-work for robots in three-dimensional (3D) environments using graph topology and sub-maps. This framework aims to find the best trajectory for loop-closure by re-visiting old poses based on the T-optimality and D-optimality metrics of the Fisher information matrix (FIM) in pose-graph SLAM. In order to reduce computational complexity, graph topologies are introduced, including weighted node degree (T-optimality metric) and weighted tree-connectivity (D-optimality metric), to choose a candidate trajectory and several key poses. With the help of the key poses, a sampling-based path planning method and a continuous-time trajectory optimization method are combined hierarchically and applied in the whole framework. So as to further improve the real-time capability of the method, the sub-map joining method is used in the estimation and planning process for large-scale active SLAM problems. In simulations and experiments, we validate our approach by comparing against existing methods, and we demonstrate the on-line planning part using a quad-rotor unmanned aerial vehicle (UAV)

    Past, Present, and Future of Simultaneous Localization And Mapping: Towards the Robust-Perception Age

    Get PDF
    Simultaneous Localization and Mapping (SLAM)consists in the concurrent construction of a model of the environment (the map), and the estimation of the state of the robot moving within it. The SLAM community has made astonishing progress over the last 30 years, enabling large-scale real-world applications, and witnessing a steady transition of this technology to industry. We survey the current state of SLAM. We start by presenting what is now the de-facto standard formulation for SLAM. We then review related work, covering a broad set of topics including robustness and scalability in long-term mapping, metric and semantic representations for mapping, theoretical performance guarantees, active SLAM and exploration, and other new frontiers. This paper simultaneously serves as a position paper and tutorial to those who are users of SLAM. By looking at the published research with a critical eye, we delineate open challenges and new research issues, that still deserve careful scientific investigation. The paper also contains the authors' take on two questions that often animate discussions during robotics conferences: Do robots need SLAM? and Is SLAM solved

    Information metrics for localization and mapping

    Get PDF
    Decades of research have made possible the existence of several autonomous systems that successfully and efficiently navigate within a variety of environments under certain conditions. One core technology that has allowed this is simultaneous localization and mapping (SLAM), the process of building a representation of the environment while localizing the robot in it. State-of-the-art solutions to the SLAM problem still rely, however, on heuristic decisions and options set by the user. In this thesis we search for principled solutions to various aspects of the localization and mapping problem with the help of information metrics. One such aspect is the issue of scalability. In SLAM, the problem size grows indefinitely as the experiment goes by, increasing computational resource demands. To maintain the problem tractable, we develop methods to build an approximation to the original network of constraints of the SLAM problem by reducing its size while maintaining its sparsity. In this thesis we propose three methods to build the topology of such approximated network, and two methods to perform the approximation itself. In addition, SLAM is a passive application. It means, it does not drive the robot. The problem of driving the robot with the aim of both accurately localizing the robot and mapping the environment is called active SLAM. In this problem two normally opposite forces drive the robot, one to new places discovering unknown regions and another to revisit previous configurations to improve localization. As opposed to heuristics, in this thesis we pose the problem as the joint minimization of both map and trajectory estimation uncertainties, and present four different active SLAM approaches based on entropy-reduction formulation. All methods presented in this thesis have been rigorously validated in both synthetic and real datasets.Dècades de recerca han fet possible l’existència de nombrosos sistemes autònoms que naveguen eficaçment i eficient per varietat d’entorns sota certes condicions. Una de les principals tecnologies que ho han fet possible és la localització i mapeig simultanis (SLAM), el procés de crear una representació de l’entorn mentre es localitza el robot en aquesta. De tota manera, els algoritmes d’SLAM de l’estat de l’art encara basen moltes decisions en heurístiques i opcions a escollir per l’usuari final. Aquesta tesi persegueix solucions fonamentades per a varietat d’aspectes del problema de localització i mappeig amb l’ajuda de mesures d’informació. Un d’aquests aspectes és l’escalabilitat. En SLAM, el problema creix indefinidament a mesura que l’experiment avança fent créixer la demanda de recursos computacionals. Per mantenir el problema tractable, desenvolupem mètodes per construir una aproximació de la xarxa de restriccions original del problema d’SLAM, reduint així el seu tamany a l’hora que es manté la seva naturalesa dispersa. En aquesta tesi, proposem tres métodes per confeccionar la topologia de l’approximació i dos mètodes per calcular l’aproximació pròpiament. A més, l’SLAM és una aplicació passiva. És a dir que no dirigeix el robot. El problema de guiar el robot amb els objectius de localitzar el robot i mapejar l’entorn amb precisió es diu SLAM actiu. En aquest problema, dues forces normalment oposades guien el robot, una cap a llocs nous descobrint regions desconegudes i l’altra a revisitar prèvies configuracions per millorar la localització. En contraposició amb mètodes heurístics, en aquesta tesi plantegem el problema com una minimització de l’incertesa tant en el mapa com en l’estimació de la trajectòria feta i presentem quatre mètodes d’SLAM actiu basats en la reducció de l’entropia. Tots els mètodes presentats en aquesta tesi han estat rigurosament validats tant en sèries de dades sintètiques com en reals

    Information metrics for localization and mapping

    Get PDF
    Decades of research have made possible the existence of several autonomous systems that successfully and efficiently navigate within a variety of environments under certain conditions. One core technology that has allowed this is simultaneous localization and mapping (SLAM), the process of building a representation of the environment while localizing the robot in it. State-of-the-art solutions to the SLAM problem still rely, however, on heuristic decisions and options set by the user. In this thesis we search for principled solutions to various aspects of the localization and mapping problem with the help of information metrics. One such aspect is the issue of scalability. In SLAM, the problem size grows indefinitely as the experiment goes by, increasing computational resource demands. To maintain the problem tractable, we develop methods to build an approximation to the original network of constraints of the SLAM problem by reducing its size while maintaining its sparsity. In this thesis we propose three methods to build the topology of such approximated network, and two methods to perform the approximation itself. In addition, SLAM is a passive application. It means, it does not drive the robot. The problem of driving the robot with the aim of both accurately localizing the robot and mapping the environment is called active SLAM. In this problem two normally opposite forces drive the robot, one to new places discovering unknown regions and another to revisit previous configurations to improve localization. As opposed to heuristics, in this thesis we pose the problem as the joint minimization of both map and trajectory estimation uncertainties, and present four different active SLAM approaches based on entropy-reduction formulation. All methods presented in this thesis have been rigorously validated in both synthetic and real datasets.Dècades de recerca han fet possible l’existència de nombrosos sistemes autònoms que naveguen eficaçment i eficient per varietat d’entorns sota certes condicions. Una de les principals tecnologies que ho han fet possible és la localització i mapeig simultanis (SLAM), el procés de crear una representació de l’entorn mentre es localitza el robot en aquesta. De tota manera, els algoritmes d’SLAM de l’estat de l’art encara basen moltes decisions en heurístiques i opcions a escollir per l’usuari final. Aquesta tesi persegueix solucions fonamentades per a varietat d’aspectes del problema de localització i mappeig amb l’ajuda de mesures d’informació. Un d’aquests aspectes és l’escalabilitat. En SLAM, el problema creix indefinidament a mesura que l’experiment avança fent créixer la demanda de recursos computacionals. Per mantenir el problema tractable, desenvolupem mètodes per construir una aproximació de la xarxa de restriccions original del problema d’SLAM, reduint així el seu tamany a l’hora que es manté la seva naturalesa dispersa. En aquesta tesi, proposem tres métodes per confeccionar la topologia de l’approximació i dos mètodes per calcular l’aproximació pròpiament. A més, l’SLAM és una aplicació passiva. És a dir que no dirigeix el robot. El problema de guiar el robot amb els objectius de localitzar el robot i mapejar l’entorn amb precisió es diu SLAM actiu. En aquest problema, dues forces normalment oposades guien el robot, una cap a llocs nous descobrint regions desconegudes i l’altra a revisitar prèvies configuracions per millorar la localització. En contraposició amb mètodes heurístics, en aquesta tesi plantegem el problema com una minimització de l’incertesa tant en el mapa com en l’estimació de la trajectòria feta i presentem quatre mètodes d’SLAM actiu basats en la reducció de l’entropia. Tots els mètodes presentats en aquesta tesi han estat rigurosament validats tant en sèries de dades sintètiques com en reals

    Information metrics for localization and mapping

    Get PDF
    Aplicat embargament des de la defensa de la tesi fins al 12/2019Decades of research have made possible the existence of several autonomous systems that successfully and efficiently navigate within a variety of environments under certain conditions. One core technology that has allowed this is simultaneous localization and mapping (SLAM), the process of building a representation of the environment while localizing the robot in it. State-of-the-art solutions to the SLAM problem still rely, however, on heuristic decisions and options set by the user. In this thesis we search for principled solutions to various aspects of the localization and mapping problem with the help of information metrics. One such aspect is the issue of scalability. In SLAM, the problem size grows indefinitely as the experiment goes by, increasing computational resource demands. To maintain the problem tractable, we develop methods to build an approximation to the original network of constraints of the SLAM problem by reducing its size while maintaining its sparsity. In this thesis we propose three methods to build the topology of such approximated network, and two methods to perform the approximation itself. In addition, SLAM is a passive application. It means, it does not drive the robot. The problem of driving the robot with the aim of both accurately localizing the robot and mapping the environment is called active SLAM. In this problem two normally opposite forces drive the robot, one to new places discovering unknown regions and another to revisit previous configurations to improve localization. As opposed to heuristics, in this thesis we pose the problem as the joint minimization of both map and trajectory estimation uncertainties, and present four different active SLAM approaches based on entropy-reduction formulation. All methods presented in this thesis have been rigorously validated in both synthetic and real datasets.Dècades de recerca han fet possible l’existència de nombrosos sistemes autònoms que naveguen eficaçment i eficient per varietat d’entorns sota certes condicions. Una de les principals tecnologies que ho han fet possible és la localització i mapeig simultanis (SLAM), el procés de crear una representació de l’entorn mentre es localitza el robot en aquesta. De tota manera, els algoritmes d’SLAM de l’estat de l’art encara basen moltes decisions en heurístiques i opcions a escollir per l’usuari final. Aquesta tesi persegueix solucions fonamentades per a varietat d’aspectes del problema de localització i mappeig amb l’ajuda de mesures d’informació. Un d’aquests aspectes és l’escalabilitat. En SLAM, el problema creix indefinidament a mesura que l’experiment avança fent créixer la demanda de recursos computacionals. Per mantenir el problema tractable, desenvolupem mètodes per construir una aproximació de la xarxa de restriccions original del problema d’SLAM, reduint així el seu tamany a l’hora que es manté la seva naturalesa dispersa. En aquesta tesi, proposem tres métodes per confeccionar la topologia de l’approximació i dos mètodes per calcular l’aproximació pròpiament. A més, l’SLAM és una aplicació passiva. És a dir que no dirigeix el robot. El problema de guiar el robot amb els objectius de localitzar el robot i mapejar l’entorn amb precisió es diu SLAM actiu. En aquest problema, dues forces normalment oposades guien el robot, una cap a llocs nous descobrint regions desconegudes i l’altra a revisitar prèvies configuracions per millorar la localització. En contraposició amb mètodes heurístics, en aquesta tesi plantegem el problema com una minimització de l’incertesa tant en el mapa com en l’estimació de la trajectòria feta i presentem quatre mètodes d’SLAM actiu basats en la reducció de l’entropia. Tots els mètodes presentats en aquesta tesi han estat rigurosament validats tant en sèries de dades sintètiques com en reals.Postprint (published version

    Automatic Reconstruction of Textured 3D Models

    Get PDF
    Three dimensional modeling and visualization of environments is an increasingly important problem. This work addresses the problem of automatic 3D reconstruction and we present a system for unsupervised reconstruction of textured 3D models in the context of modeling indoor environments. We present solutions to all aspects of the modeling process and an integrated system for the automatic creation of large scale 3D models

    Graph-based SLAM-Aware Exploration with Prior Topo-Metric Information

    Full text link
    Autonomous exploration requires the robot to explore an unknown environment while constructing an accurate map with the SLAM (Simultaneous Localization and Mapping) techniques. Without prior information, the exploratory performance is usually conservative due to the limited planning horizon. This paper exploits a prior topo-metric graph of the environment to benefit both the exploration efficiency and the pose graph accuracy in SLAM. Based on recent advancements in relating pose graph reliability with graph topology, we are able to formulate both objectives into a SLAM-aware path planning problem over the prior graph, which finds a fast exploration path with informative loop closures that globally stabilize the pose graph. Furthermore, we derive theoretical thresholds to speed up the greedy algorithm to the problem, which significantly prune non-optimal loop closures in iterations. The proposed planner is incorporated into a hierarchical exploration framework, with flexible features including path replanning and online prior map update that adds additional information to the prior graph. Extensive experiments indicate that our method has comparable exploration efficiency to others while consistently maintaining higher mapping accuracy in various environments. Our implementations will be open-source on GitHub.Comment: 8 pages, 6 figure

    Distributed Robotic Vision for Calibration, Localisation, and Mapping

    Get PDF
    This dissertation explores distributed algorithms for calibration, localisation, and mapping in the context of a multi-robot network equipped with cameras and onboard processing, comparing against centralised alternatives where all data is transmitted to a singular external node on which processing occurs. With the rise of large-scale camera networks, and as low-cost on-board processing becomes increasingly feasible in robotics networks, distributed algorithms are becoming important for robustness and scalability. Standard solutions to multi-camera computer vision require the data from all nodes to be processed at a central node which represents a significant single point of failure and incurs infeasible communication costs. Distributed solutions solve these issues by spreading the work over the entire network, operating only on local calculations and direct communication with nearby neighbours. This research considers a framework for a distributed robotic vision platform for calibration, localisation, mapping tasks where three main stages are identified: an initialisation stage where calibration and localisation are performed in a distributed manner, a local tracking stage where visual odometry is performed without inter-robot communication, and a global mapping stage where global alignment and optimisation strategies are applied. In consideration of this framework, this research investigates how algorithms can be developed to produce fundamentally distributed solutions, designed to minimise computational complexity whilst maintaining excellent performance, and designed to operate effectively in the long term. Therefore, three primary objectives are sought aligning with these three stages

    An Object SLAM Framework for Association, Mapping, and High-Level Tasks

    Full text link
    Object SLAM is considered increasingly significant for robot high-level perception and decision-making. Existing studies fall short in terms of data association, object representation, and semantic mapping and frequently rely on additional assumptions, limiting their performance. In this paper, we present a comprehensive object SLAM framework that focuses on object-based perception and object-oriented robot tasks. First, we propose an ensemble data association approach for associating objects in complicated conditions by incorporating parametric and nonparametric statistic testing. In addition, we suggest an outlier-robust centroid and scale estimation algorithm for modeling objects based on the iForest and line alignment. Then a lightweight and object-oriented map is represented by estimated general object models. Taking into consideration the semantic invariance of objects, we convert the object map to a topological map to provide semantic descriptors to enable multi-map matching. Finally, we suggest an object-driven active exploration strategy to achieve autonomous mapping in the grasping scenario. A range of public datasets and real-world results in mapping, augmented reality, scene matching, relocalization, and robotic manipulation have been used to evaluate the proposed object SLAM framework for its efficient performance.Comment: Accepted by IEEE Transactions on Robotics(T-RO
    • …
    corecore