12,844 research outputs found

    A Survey of Prediction and Classification Techniques in Multicore Processor Systems

    Get PDF
    In multicore processor systems, being able to accurately predict the future provides new optimization opportunities, which otherwise could not be exploited. For example, an oracle able to predict a certain application\u27s behavior running on a smart phone could direct the power manager to switch to appropriate dynamic voltage and frequency scaling modes that would guarantee minimum levels of desired performance while saving energy consumption and thereby prolonging battery life. Using predictions enables systems to become proactive rather than continue to operate in a reactive manner. This prediction-based proactive approach has become increasingly popular in the design and optimization of integrated circuits and of multicore processor systems. Prediction transforms from simple forecasting to sophisticated machine learning based prediction and classification that learns from existing data, employs data mining, and predicts future behavior. This can be exploited by novel optimization techniques that can span across all layers of the computing stack. In this survey paper, we present a discussion of the most popular techniques on prediction and classification in the general context of computing systems with emphasis on multicore processors. The paper is far from comprehensive, but, it will help the reader interested in employing prediction in optimization of multicore processor systems

    Energy challenges for ICT

    Get PDF
    The energy consumption from the expanding use of information and communications technology (ICT) is unsustainable with present drivers, and it will impact heavily on the future climate change. However, ICT devices have the potential to contribute signi - cantly to the reduction of CO2 emission and enhance resource e ciency in other sectors, e.g., transportation (through intelligent transportation and advanced driver assistance systems and self-driving vehicles), heating (through smart building control), and manu- facturing (through digital automation based on smart autonomous sensors). To address the energy sustainability of ICT and capture the full potential of ICT in resource e - ciency, a multidisciplinary ICT-energy community needs to be brought together cover- ing devices, microarchitectures, ultra large-scale integration (ULSI), high-performance computing (HPC), energy harvesting, energy storage, system design, embedded sys- tems, e cient electronics, static analysis, and computation. In this chapter, we introduce challenges and opportunities in this emerging eld and a common framework to strive towards energy-sustainable ICT

    DyPS: Dynamic Processor Switching for Energy-Aware Video Decoding on Multi-core SoCs

    Full text link
    In addition to General Purpose Processors (GPP), Multicore SoCs equipping modern mobile devices contain specialized Digital Signal Processor designed with the aim to provide better performance and low energy consumption properties. However, the experimental measurements we have achieved revealed that system overhead, in case of DSP video decoding, causes drastic performances drop and energy efficiency as compared to the GPP decoding. This paper describes DyPS, a new approach for energy-aware processor switching (GPP or DSP) according to the video quality . We show the pertinence of our solution in the context of adaptive video decoding and describe an implementation on an embedded Linux operating system with the help of the GStreamer framework. A simple case study showed that DyPS achieves 30% energy saving while sustaining the decoding performanc

    Low Power system Design techniques for mobile computers

    Get PDF
    Portable products are being used increasingly. Because these systems are battery powered, reducing power consumption is vital. In this report we give the properties of low power design and techniques to exploit them on the architecture of the system. We focus on: min imizing capacitance, avoiding unnecessary and wasteful activity, and reducing voltage and frequency. We review energy reduction techniques in the architecture and design of a hand-held computer and the wireless communication system, including error control, sys tem decomposition, communication and MAC protocols, and low power short range net works
    • 

    corecore