2,830 research outputs found

    Logical topology design for IP rerouting: ASONs versus static OTNs

    Get PDF
    IP-based backbone networks are gradually moving to a network model consisting of high-speed routers that are flexibly interconnected by a mesh of light paths set up by an optical transport network that consists of wavelength division multiplexing (WDM) links and optical cross-connects. In such a model, the generalized MPLS protocol suite could provide the IP centric control plane component that will be used to deliver rapid and dynamic circuit provisioning of end-to-end optical light paths between the routers. This is called an automatic switched optical (transport) network (ASON). An ASON enables reconfiguration of the logical IP topology by setting up and tearing down light paths. This allows to up- or downgrade link capacities during a router failure to the capacities needed by the new routing of the affected traffic. Such survivability against (single) IP router failures is cost-effective, as capacity to the IP layer can be provided flexibly when necessary. We present and investigate a logical topology optimization problem that minimizes the total amount or cost of the needed resources (interfaces, wavelengths, WDM line-systems, amplifiers, etc.) in both the IP and the optical layer. A novel optimization aspect in this problem is the possibility, as a result of the ASON, to reuse the physical resources (like interface cards and WDM line-systems) over the different network states (the failure-free and all the router failure scenarios). We devised a simple optimization strategy to investigate the cost of the ASON approach and compare it with other schemes that survive single router failures

    Enhancing Performance by Salvaging Route Reply Messages in On-Demand Routing Protocols for MANETs

    Get PDF
    Researchers prefer on-demand routing protocols in mobile ad hoc networks where resources such as energy and bandwidth are constrained. In these protocols, a source discovers a route to a destination typically by flooding the entire or a part of the network with a route request (RREQ) message. The destination responds by sending a route reply (RREP) message to the source. The RREP travels hop by hop on the discovered route in the reverse direction or on another route to the source. Sometimes the RREP can not be sent to the intended next hop by an intermediate node due to node mobility or network congestion. Existing on-demand routing protocols handle the undeliverable RREP as a normal data packet - discard the packet and initiate a route error message. This is highly undesirable because a RREP message has a lot at stake – it is obtained at the cost of a large number of RREQ transmissions, which is an expensive and timeconsuming process. In this paper, we propose the idea of salvaging route reply (SRR) to improve the performance of on-demand routing protocols. We present two schemes to salvage an undeliverable RREP. Scheme one actively sends a one-hop salvage request message to find an alternative path to the source, while scheme two passively maintains a backup path to the source. Furthermore, we present the design of two SRR schemes in AODV and prove that routes are loop-free after a salvaging. We conduct extensive simulations to evaluate the performance of SRR, and the simulation results confirm the effectiveness of the SRR approach

    S-ROGUE: Routing protocol for Unmanned Systems on the Surface

    Get PDF
    International audienceThe cooperation of heterogeneous unmanned systems , for instance, between aerial engines and terrestrial engines, relies on reliable communication. Data delivery is ensured by routing protocols, but traditional routing approaches, MANET and DTN, are not efficient in such networks. In this paper, we propose the S-ROGUE routing protocol combining the paradigms MANET and DTN and switching between them according to the network connectivity. On the one hand, the S-ROGUE MANET algorithm relies on a proactive approach and a novel metric to anticipate link disruptions and detect unidirectional links. On the other hand, the S-ROGUE DTN algorithm uses on a reinforcement learning technique to select the best routing action. It implements also a replication control and packet prioritization to improve routing performances. We lead a performance evaluation of S-ROGUE with similar routing protocols in realistic simulated environments and conclude that S-ROGUE has the best routing performance regardless the scenarios

    Resilient communications in smart grids

    Get PDF
    Tese de mestrado, Segurança Informática, Universidade de Lisboa, Faculdade de Ciências, 2018As redes elétricas, algumas já centenárias, foram concebidas para uma realidade bastante diferente da actual. O facto de terem sido desenhadas para transportar e distribuir a energia de forma unidirecional, torna a infraestrutura rígida, causando problemas em termos de escalabilidade e dificulta a sua evolução. Conhecidas questões ambientais têm levado a que a geração de energia baseada em combustíveis fosseis seja substituída pela geração através de fontes de energia renováveis. Esta situação motivou a criação de incentivos ao investimento nas fontes de energia renováveis, o que levou a que cada vez mais consumidores apostem na microgeração. Estas alterações causaram uma mudança na forma como é feita a produção e distribuição de energia elétrica, com uma aposta crescente na interligação entre as várias fontes ao longo da infraestrutura, tornando a gestão destas redes uma tarefa extremamente complexa. Com o crescimento significativo de consumidores que também podem ser produtores, torna-se essencial uma coordenação cuidada na injeção de energia na rede. Este facto, aliado à crescente utilização de energia elétrica, faz com que a manutenção da estabilidade da rede seja um enorme desafio. As redes inteligentes, ou smart grids, propõem resolver muitos dos problemas que surgiram com esta alteração do paradigma de consumo/produção de energia elétrica. Os componentes da rede passam a comunicar uns com os outros, tornando a rede eléctrica bidirecional, facilitando assim a sua manutenção e gestão. A possibilidade de constante troca de informação entre todos os componentes que constituem a smart grid permite uma reação imediata relativamente às ações dos produtores e consumidores de energia elétrica. No entanto, com esta alteração de paradigma surgiram também muitos desafios. Nomeadamente, a necessidade de comunicação entre os equipamentos existentes nas smart grids leva a que as redes de comunicação tenham de cobrir grandes áreas. Essa complexidade aumenta quando a gestão necessita de ser feita ao nível de cada equipamento e não de forma global. Isto ´e devido ao facto de nas redes de comunicação tradicionais, o plano de controlo e o de dados estarem no mesmo equipamento, o que leva a que o seu controlo seja difícil e propício a erros. Este controlo descentralizado dificulta também a reorganização da rede quando ocorrem faltas pelo facto de não existir um dispositivo que tenha o conhecimento completo da rede. A adaptação rápida a faltas de forma a tornar a comunicação resiliente tem grande importância em redes sensíveis a latência como é o caso da smart grid, pelo que mecanismos eficientes de tolerância a faltas devem ser implementados. As redes definidas por software, ou Software Defined Networks (SDN), surgem como uma potencial solução para estes problemas. Através da separação entre o plano de controlo e o plano de dados, permite a centralização lógica do controlo da rede no controlador. Para tal, é necessário adicionar uma camada de comunicação entre o controlador e os dispositivos de rede, através de um protocolo como o Openflow. Esta separação reduz a complexidade da gestão da rede e a centralização lógica torna possível programar a rede de forma global, de modo a aplicar as políticas pretendidas. Estes fatores tornam a SDN uma soluçãoo interessante para utilizar em smart grids. Esta tese investiga formas de tornar a rede de comunicações empregue numa smart grid resiliente a faltas. Pelas vantagens mencionadas anteriormente, é usada uma solução baseada em SDN, sendo propostos dois módulos essenciais. O primeiro tem como objectivo a monitorização segura da rede, permitindo obter em tempo real métricas como largura de banda, latência e taxa de erro. O segundo módulo trata do roteamento e engenharia de tráfego, utilizando a informação fornecida pelo módulo de monitorização de forma a que os componentes da smart grid comuniquem entre si, garantindo que os requisitos das aplicações são cumpridos. Dada a criticidade da rede elétrica e a importância das comunicações na smart grid, os mecanismos desenvolvidos toleram faltas, quer de tipo malicioso, quer de tipo acidental.The evolution on how electricity is produced and consumed has made the management of power grids an extremely complex task. Today’s centenary power grids were not designed to fit a new reality where consumers can also be producers, or the impressive increase in consumption caused by more sophisticated and powerful appliances. Smart Grids have been prepared as a solution to cope with this problem, by supporting more sophisticated communications among all the components, allowing the grid to react quickly to changes in both consumption or production of energy. On the other hand, resorting to information and communication technologies (ICT) brings some challenges, namely, managing network devices at this scale and assuring that the strict communication requirements are fulfilled is a dauting task. Software Defined Networks (SDN) can address some of these problems by separating the control and data planes, and logically centralizing network control in a controller. The centralised control has the ability to observe the current state of the network from a vantage point, and programatically react based on that view, making the management task substantially easier. In this thesis we provide a solution for a resilient communications network for Smart Grids based on SDN. As Smart Grids are very sensitive to network issues, such as latency and packet loss, it is important to detect and react to any fault in a timely manner. To achieve this we propose and develop two core modules, a network monitor and a routing and traffic engineering module. The first is a solution for monitoring with the goal to obtain a global view of the current state of the network. The solution is secure, allowing malicious attempts to subvert this module to be detected in a timely manner. This information is then used by the second module to make routing decisions. The routing and traffic engineering module ensures that the communications among the smart grid components are possible and fulfils the strict requirements of the Smart Grid

    Resilient networking in wireless sensor networks

    Get PDF
    This report deals with security in wireless sensor networks (WSNs), especially in network layer. Multiple secure routing protocols have been proposed in the literature. However, they often use the cryptography to secure routing functionalities. The cryptography alone is not enough to defend against multiple attacks due to the node compromise. Therefore, we need more algorithmic solutions. In this report, we focus on the behavior of routing protocols to determine which properties make them more resilient to attacks. Our aim is to find some answers to the following questions. Are there any existing protocols, not designed initially for security, but which already contain some inherently resilient properties against attacks under which some portion of the network nodes is compromised? If yes, which specific behaviors are making these protocols more resilient? We propose in this report an overview of security strategies for WSNs in general, including existing attacks and defensive measures. In this report we focus at the network layer in particular, and an analysis of the behavior of four particular routing protocols is provided to determine their inherent resiliency to insider attacks. The protocols considered are: Dynamic Source Routing (DSR), Gradient-Based Routing (GBR), Greedy Forwarding (GF) and Random Walk Routing (RWR)
    corecore