134 research outputs found

    Development of a micro-Hall magnetometer and studies of individual Fe-filled carbon nanotubes

    Get PDF
    This work presents Hall magnetometry studies on individual Fe-filled carbon nanotubes (CNT). For this approach high sensitivity micro Hall sensors based on a GaAs/AlGaAs heterostructure with two dimensional electron gas (2DEG) were developed. Electron beam lithography and wet chemical etching were utilized for patterning Hall sensors onto the heterostructure surface. The devices were characterized by means of scanning electron microscopy, atomic force microscopy and transport measurements. Individual Fe-filled CNTs were placed on active part of devices (800 × 800 nm2) with aid of micromanipulator system. Measurements on an individual iron nanowires confirmed devices applicability for measurements of nanoscale magnets. High nucleation fields were found of about 900 mT for a Fe nanowire with diameter of d = 26 nm. The magnetization reversal mechanism was found to be a localized process whereas the angular dependence of nucleation fields is in a good agreement with a curling mode. Through magnetization studies performed on differently functionalized ensembles of CNT by means of Alternating Gradient – and Superconducting Quantum Interference Device (SQUID) magnetometry a strong influence of a remaining ferromagnetic catalyst material on the magnetic properties of CNT was observed. Magnetization studies proved that a post annealing method removes catalyst material completely

    Ioonsete elektroaktiivsete täiturite elektromehaaniline modelleerimine ja juhtimine

    Get PDF
    Väitekirja elektrooniline versioon ei sisalda publikatsiooneIoonsed elektroaktiivsed polümeerid e. tehislihased on polümeermaterjalid, mille oluline iseärasus on võime muuta elektrienergiat mehhaaniliseks energiaks. Elektroaktiivsetest polümeeridest valmistatud pehmetel täituritel on mitmed huvipakkuvad omadused, näiteks suur deformatsioon madala rakendatud pinge korral, märkimisväärne tekitatud jõu ja massi suhe ning võime töötada nii vesikeskkonnas kui õhus. Niisuguste täiturite kasutamine on paljutõotav eriti just miniatuursetes elusloodusest inspireeritud robootikarakendustes. Näiteks võib tuua aktiivsed mikro-manipulatsioonisüsteemid või isepainduvad pehmed kateetrid, mis on iseäranis nõutud meditsiini-tehnoloogias. Käesoleva väitekirja uurimissfääriks on sellistest materjalidest valmistatud täiturmehhanismide modelleerimine, valmistamine ja juhtimine, päädides sisuliselt ühes tükis valmistatud mitme vabadusastmega paralleelmanipulaatorite väljatöötamisega. Kasutades kompleksset füüsikalistel, elektrokeemilistel ning mehaanilistel alusteadmistel põhinevat mudelit kirjeldatakse ja ennustatakse sellist tüüpi täiturmehhanismide elektrilise sisendi ja mehhaanilise väljundi vahelisi seoseid. Mudel kirjeldab ioonide transpordi dünaamikat elektriväljas, kombineerides Nernst-Plancki ja Poissoni võrrandeid. Mitmekihilise polümeermaterjali mehhaaniline käitumine on seotud laengu- ja massitasakaalu poolt põhjustatud eri kihtide erineva ruumilise paisumisega ja kahanemisega. Kõike seda kokku võttes ning rakendades numbrilist modelleerimist lõplike elementide meetodil saadakse kvantitatiivsed tulemused, mis suudavad prognoosida täiturmehhanismi käitumist ja võimaldavad projekteerida, simuleerida ja optimeerida ka neil täituritel põhinevaid keerulisemaid mehhanisme. Koostatud mudeli valideerimiseks modelleeriti ja valmistati kaks tööpõhimõtteliselt sarnast, kuid erinevatel elektroaktiivsetel polümeermaterjalidel põhinevat ning eri metoodikatel valmistatud mitmest täiturist koosnevat mitme vabadusastmega mikromanipulaatorit. Väitekirjas demonstreeritakse, et koostatud mudel on suure täpsusega võimeline ennustama nii iga individuaalse täituri kui ka mõlema manipulaatori käitumist. Demonstreerimaks piisksadestusprintimismeetodil valmistatud manipulaatori efektiivsust, kirjeldatakse kahte erinevat kontrollrakendust. Esmalt näidatakse tagasisidestamata kontrollitavat seadet, kus pööratakse nelja täituri abil peeglit, suunates laserikiirt X-Y tasapinnas ettemääratud punktidele. Teiseks näidisrakenduseks on tagasisidestatud kontrollmetoodikaga juhitav mikroskoobi preparaadiliigutaja, mille abil saab preparaati nii tõsta-langetada kui ka pöörata. Manipulaatorite valmistamise käigus leiti, et piisksadestusprintimise meetodi täpsus, jõudlus ja skaleeritavus võimaldavad suure tootlikkusega valmistada identseid keerulisi mitmeosalisi manipulaatoreid. See tulemus näitab ilmekalt uue tehnoloogia eeliseid traditsiooniliste valmistamisviiside ees.Ionic electroactive polymers (IEAPs) actuators are kind of smart composite materials that have the ability to convert electrical energy into mechanical energy. The actuators fabricated using IEAP materials will benefit from attractive features such as high compliance, lightweight, large strain, low voltage, biocompatibility, high force to weight ratio, and ability to operate in an aqueous environment as well as in open air. The future of soft robotic actuation system with IEAP actuators is very promising especially in the microdomain for cutting edge applications such as micromanipulation systems, medical devices with higher dexterity, soft catheters with built-in actuation, bio-inspired robotics with better-mimicking properties and active compliant micromechanisms. This dissertation has introduced an effective modelling framework representing the complex electro-chemo-mechanical dynamics that can predict the electromechanical transduction in this kind of actuators. The model describes the ion transport dynamics under electric field by combining the Nernst-Planck and Poisson’s equation and the mechanical response is associated with the volumetric swelling caused by resulting charge and mass balance. The framework of this modelling method to predict the behavior of the actuator enabled to design, simulate and optimize compliant mechanism using IEAP actuators. As a result, a novel parallel manipulator with three degrees of freedom was modelled and fabricated with two different types of electrode materials and is characterized and compared with the simulation model. It is shown that the developed model was able to predict the behavior of the manipulator with a good agreement ensuring the high fidelity of the modelling framework. In the process of the fabrication, it is found that the manipulator fabricated through additive manufacturing method allows to fabricate multipart and intricate patterns with high throughput production capability and also opens the opportunity to print a matrix array of identical actuators over a wide size scale along with improved performance. Finally, to showcase the competence of the printed manipulator two different control application was demonstrated. At first, an open loop four-way optical switch showing the capability of optically triggering four switches in the X-Y plane in an automated sequence is shown followed by closed-loop micromanipulation of an active microscope stage using model predictive control system architecture is shown. The application of the manipulator can be extended to other potential applications such as a zoom lens, a microscope stage, laser steering, autofocusing systems, and micromirror. Overall this dissertation results in modelling, fabrication, and control of ionic electroactive polymer actuators leading to the development of a low cost, monolithic, flat, multi DOF parallel manipulator for micromanipulation application.https://www.ester.ee/record=b524351

    Microdevices and Microsystems for Cell Manipulation

    Get PDF
    Microfabricated devices and systems capable of micromanipulation are well-suited for the manipulation of cells. These technologies are capable of a variety of functions, including cell trapping, cell sorting, cell culturing, and cell surgery, often at single-cell or sub-cellular resolution. These functionalities are achieved through a variety of mechanisms, including mechanical, electrical, magnetic, optical, and thermal forces. The operations that these microdevices and microsystems enable are relevant to many areas of biomedical research, including tissue engineering, cellular therapeutics, drug discovery, and diagnostics. This Special Issue will highlight recent advances in the field of cellular manipulation. Technologies capable of parallel single-cell manipulation are of special interest

    Cooperative Manipulation using a Magnetically Navigated Microrobot and a Micromanipulator

    Get PDF
    The cooperative manipulation of a common object using two or more manipulators is a popular research field in both industry and institutions. Different types of manipulators are used in cooperative manipulation for carrying heavy loads and delicate operations. Their applications range from macro to micro. In this thesis, we are interested in the development of a novel cooperative manipulator for manipulation tasks in a small workspace. The resultant cooperative manipulation system consists of a magnetically navigated microrobot (MNM) and a motorized micromanipulator (MM). The MNM is a small cylinder permanent magnet with 10mm diameter and 10mm height. The MM model is MP-285 which is a commercialized product. Here, the MNM is remotely controlled by an external magnetic field. The property of non-contact manipulation makes it a suitable choice for manipulation in a confined space. The cooperative manipulation system in this thesis used a master/slave mechanism as the central control strategy. The MM is the master side. The MNM is the slave side. During the manipulation process, the master manipulator MM is always position controlled, and it leads the object translation according to the kinematic constraints of the cooperative manipulation task. The MNM is position controlled at the beginning of the manipulation. In the translation stage, the MNM is switched to force control to maintain a successful holding of the object, and at the same time to prevent damaging the object by large holding force. Under the force control mode, the motion command to the MNM is calculated from a position-based impedance controller that enforces a relationship between the position of the MNM and the force. In this research, the accurate motion control of both manipulators are firstly studied before the cooperative manipulation is conducted. For the magnetic navigation system, the magnetic field in its workspace is modeled using an experimental measurement data-driven technique. The developed model is then used to develop a motion controller for navigating of a small cylindrical permanent magnet. The accuracy of motion control is reached at 20 µm in three degrees of freedom. For the motorized micromanipulator, a standard PID controller is designed to control its motion stage. The accuracy of the MM navigation is 0.8 µm. Since the MNM is remotely manipulated by an external magnetic field in a small space, it is challenging to install an on-board force sensor to measure the contact force between the MNM and the object. Therefore, a dual-axial o_-board force determination mechanism is proposed. The force is determined according to the linear relation between the minimum magnetic potential energy point and the real position of the MNM in the workspace. For convenience, the minimum magnetic potential energy point is defined as the Bmax in the literature. In this thesis, the dual-axial Bmax position is determined by measuring the magnetic ux density passing through the workspace using four Hall-effect sensors installed at the bottom of an iron pole-piece. The force model is experimentally validated in a horizontal plane with an accuracy of 2 µN in the x- and y- direction of horizontal planes. The proposed cooperative manipulator is then used to translate a hard-shell small object in two directions of a vertical plane, while one direction is constrained with a desired holding force. During the manipulation process, a digital camera is used to capture the real-time position of the MNM, the MM end-effector, and the manipulated object. To improve the performance of force control on the MNM, the proposed dual-axial force model is used to examine the compliant force control of the MNM while it is navigated to contact with uncertain environments. Here, uncertain refers to unknown environmental stiffness. An adaptive position-based impedance controller is implemented to estimate the stiffness of the environment and the contact force. The controller is examined by navigating the MNM to push a thin aluminum beam whose stiffness is unknown. The studied cooperative manipulation system has potential applications in biomedical microsurgery and microinjection. It should be clarified that the current system setup with 10mm ×10 mm MNM is not proper for this micromanipulation. In order to conduct research on microinjection, the size of the MNM and the end-effector of the MNM should be down-scaled to micrometers. In addition, the navigation accuracy of the MNM should also be improved to adopt the micromanipulation tasks

    Fabrication of 3D micro-objects by two-photon lithography for optical tweezers manipulation

    Get PDF
    In the last decade Optical Tweezers (OT) and Two Photon Polymerization (TPP), two already established techniques for contactless manipulation of micro-objects in liquids and for the fabrication of three-dimensional micro-objects of arbitrary shape, respectively, have consolidated their presence in the laboratory practice, not only as subject of scientific and technical investigations, but also as convenient tools for applications to other fields. This thesis tries to combines these worlds, using TPP to fabricate micro-objects that could be trapped and actuated by OT, with the aim of pushing forward the possibilities of producing new tools, in particular for cell biology studies. We demonstrated here a convenient scheme for the fabrication of 3D micro-objects by two-photon lithography, their release from the substrate under physiological conditions and actuation by optical tweezers. This opens interesting possibilities in mechanobiology experiments, for fabricating and precisely placing 3D micro-tools in proximity with living cells and actuating them by optical tweezers (OT) to operate on cells. These possibilities can be extended to the simultaneous dynamical manipulation of more trapped objects as demonstrated in recent years. In the present work micro-objects with and without mirror-symmetry were fabricated by two photon lithography (TPL) in SU-8 negative photoresist on a water soluble sacrificial layer on glass, released from the substrate in water, and set into rotational motion by optical tweezers, exploiting the optically induced torque generated by a focused laser beam interacting with micro-objects with broken mirror-symmetry. While fabricated simple micro-cones were found stable in the optical trap, micro-cones modified with the addition of chiral features were propelled away due to the imbalance of scattering, gradient optical forces and fluid dynamic forces generated in the rotation. In the near future the combination of optical tweezers, two-photon polymerization and advanced imaging techniques will enable new studies of the effects of mechanical stimulation of a cell onto the molecular events inside the cell

    Towards Arbitrary Acoustic Force Fields

    Get PDF

    Magnetic properties of individual iron filled carbon nanotubes and their application as probes for magnetic force microscopy

    Get PDF
    Iron filled carbon nanotubes (FeCNT) can be described as carbon nanotubes which contain an iron nanowire of several micrometers length and a diameter of approximately 10-100 nm. The carbon shells protect the iron core from oxidation and mechanical damage thus enabling a wide range of applications that require a long-term stability. The magnetic properties of the enclosed nanowire are in part determined by its small size and elongated shape. Magnetic force microscopy (MFM) measurements show that the iron wire exhibits a single domain behavior. Due to the large shape anisotropy it is magnetized along the long wire axis in the remanent state. Two magnetic monopoles of opposing polarity are located at the wire extremities. Depending on the structure and geometry of the individual nanowire, switching fields in the range of 100-400 mT can be found when the external field is applied along the FeCNT’s easy axis. Cantilever magnetometry shows that the switching can be attributed to a thermally assisted magnetization reversal mechanism with the nucleation and propagation of a domain wall. The defined magnetic properties of individual FeCNT combined with their mechanical strength make them ideal candidates for an application as high resolution high stability MFM probes. The fabrication of such probes can be achieved with the help of a micromanipulation setup in a scanning electron microscope. FeCNT MFM probes achieve a sub 25 nm lateral magnetic resolution. MFM measurements with FeCNT MFM probes in external fields show that the magnetization of these probes is exceptionally stable compared to conventional coated MFM probes. This greatly simplifies the data evaluation of such applied field MFM measurements. The emphasis of this work was put on the calibration of FeCNT probes to enable straightforward quantitative MFM measurements. The defined shape of the magnetically active iron nanowire allows an application of a point monopole description. Microscale parallel current carrying lines that produce a defined magnetic field are used as calibration structures to determine the effective magnetic moment of different MFM probes. The line geometry is varied in order to produce multiple magnetic field decay lengths and investigate the influence on the effective probe moment. The results show that while the effective magnetic monopole moment of a conventional MFM probe increases with an increasing sample stray field decay length, the effective moment of a FeCNT MFM probe remains constant. This enables a MFM probe calibration that stays valid for a large variety of magnetic samples. Furthermore, the fitted monopole moment of a FeCNT probe (in the order of 10E-9 Am) is consistent with the moment calculated from the nanowire geometry and the saturation magnetization of iron

    Acoustofluidic measurements on polymer-coated microbubbles: primary and secondary Bjerknes forces

    Get PDF
    The acoustically-driven dynamics of isolated particle-like objects in microfluidic environments is a well-characterised phenomenon, which has been the subject of many studies. Conversely, very few acoustofluidic researchers looked at coated microbubbles, despite their widespread use in diagnostic imaging and the need for a precise characterisation of their acoustically-driven behaviour, underpinning therapeutic applications. The main reason is that microbubbles behave differently, due to their larger compressibility, exhibiting much stronger interactions with the unperturbed acoustic field (primary Bjerknes forces) or with other bubbles (secondary Bjerknes forces). In this paper, we study the translational dynamics of commercially-available polymer-coated microbubbles in a standing-wave acoustofluidic device. At increasing acoustic driving pressures, we measure acoustic forces on isolated bubbles, quantify bubble-bubble interaction forces during doublet formation and study the occurrence of sub-wavelength structures during aggregation. We present a dynamic characterisation of microbubble compressibility with acoustic pressure, highlighting a threshold pressure below which bubbles can be treated as uncoated. Thanks to benchmarking measurements under a scanning electron microscope, we interpret this threshold as the onset of buckling, providing a quantitative measurement of this parameter at the single-bubble level. For acoustofluidic applications, our results highlight the limitations of treating microbubbles as a special case of solid particles. Our findings will impact applications where knowing the buckling pressure of coated microbubbles has a key role, like diagnostics and drug delivery
    • …
    corecore