7,604 research outputs found

    A Decision Support System for Economic Viability and Environmental Impact Assessment of Vertical Farms

    Get PDF
    Vertical farming (VF) is the practice of growing crops or animals using the vertical dimension via multi-tier racks or vertically inclined surfaces. In this thesis, I focus on the emerging industry of plant-specific VF. Vertical plant farming (VPF) is a promising and relatively novel practice that can be conducted in buildings with environmental control and artificial lighting. However, the nascent sector has experienced challenges in economic viability, standardisation, and environmental sustainability. Practitioners and academics call for a comprehensive financial analysis of VPF, but efforts are stifled by a lack of valid and available data. A review of economic estimation and horticultural software identifies a need for a decision support system (DSS) that facilitates risk-empowered business planning for vertical farmers. This thesis proposes an open-source DSS framework to evaluate business sustainability through financial risk and environmental impact assessments. Data from the literature, alongside lessons learned from industry practitioners, would be centralised in the proposed DSS using imprecise data techniques. These techniques have been applied in engineering but are seldom used in financial forecasting. This could benefit complex sectors which only have scarce data to predict business viability. To begin the execution of the DSS framework, VPF practitioners were interviewed using a mixed-methods approach. Learnings from over 19 shuttered and operational VPF projects provide insights into the barriers inhibiting scalability and identifying risks to form a risk taxonomy. Labour was the most commonly reported top challenge. Therefore, research was conducted to explore lean principles to improve productivity. A probabilistic model representing a spectrum of variables and their associated uncertainty was built according to the DSS framework to evaluate the financial risk for VF projects. This enabled flexible computation without precise production or financial data to improve economic estimation accuracy. The model assessed two VPF cases (one in the UK and another in Japan), demonstrating the first risk and uncertainty quantification of VPF business models in the literature. The results highlighted measures to improve economic viability and the viability of the UK and Japan case. The environmental impact assessment model was developed, allowing VPF operators to evaluate their carbon footprint compared to traditional agriculture using life-cycle assessment. I explore strategies for net-zero carbon production through sensitivity analysis. Renewable energies, especially solar, geothermal, and tidal power, show promise for reducing the carbon emissions of indoor VPF. Results show that renewably-powered VPF can reduce carbon emissions compared to field-based agriculture when considering the land-use change. The drivers for DSS adoption have been researched, showing a pathway of compliance and design thinking to overcome the ‘problem of implementation’ and enable commercialisation. Further work is suggested to standardise VF equipment, collect benchmarking data, and characterise risks. This work will reduce risk and uncertainty and accelerate the sector’s emergence

    Image classification over unknown and anomalous domains

    Get PDF
    A longstanding goal in computer vision research is to develop methods that are simultaneously applicable to a broad range of prediction problems. In contrast to this, models often perform best when they are specialized to some task or data type. This thesis investigates the challenges of learning models that generalize well over multiple unknown or anomalous modes and domains in data, and presents new solutions for learning robustly in this setting. Initial investigations focus on normalization for distributions that contain multiple sources (e.g. images in different styles like cartoons or photos). Experiments demonstrate the extent to which existing modules, batch normalization in particular, struggle with such heterogeneous data, and a new solution is proposed that can better handle data from multiple visual modes, using differing sample statistics for each. While ideas to counter the overspecialization of models have been formulated in sub-disciplines of transfer learning, e.g. multi-domain and multi-task learning, these usually rely on the existence of meta information, such as task or domain labels. Relaxing this assumption gives rise to a new transfer learning setting, called latent domain learning in this thesis, in which training and inference are carried out over data from multiple visual domains, without domain-level annotations. Customized solutions are required for this, as the performance of standard models degrades: a new data augmentation technique that interpolates between latent domains in an unsupervised way is presented, alongside a dedicated module that sparsely accounts for hidden domains in data, without requiring domain labels to do so. In addition, the thesis studies the problem of classifying previously unseen or anomalous modes in data, a fundamental problem in one-class learning, and anomaly detection in particular. While recent ideas have been focused on developing self-supervised solutions for the one-class setting, in this thesis new methods based on transfer learning are formulated. Extensive experimental evidence demonstrates that a transfer-based perspective benefits new problems that have recently been proposed in anomaly detection literature, in particular challenging semantic detection tasks

    Supernatural crossing in Republican Chinese fiction, 1920s–1940s

    Get PDF
    This dissertation studies supernatural narratives in Chinese fiction from the mid-1920s to the 1940s. The literary works present phenomena or elements that are or appear to be supernatural, many of which remain marginal or overlooked in Sinophone and Anglophone academia. These sources are situated in the May Fourth/New Culture ideological context, where supernatural narratives had to make way for the progressive intellectuals’ literary realism and their allegorical application of supernatural motifs. In the face of realism, supernatural narratives paled, dismissed as impractical fantasies that distract one from facing and tackling real life. Nevertheless, I argue that the supernatural narratives do not probe into another mystical dimension that might co-exist alongside the empirical world. Rather, they imagine various cases of the characters’ crossing to voice their discontent with contemporary society or to reflect on the notion of reality. “Crossing” relates to characters’ acts or processes of trespassing the boundary that separates the supernatural from the conventional natural world, thus entailing encounters and interaction between the natural and the supernatural. The dissertation examines how crossing, as a narrative device, disturbs accustomed and mundane situations, releases hidden tensions, and discloses repressed truths in Republican fiction. There are five types of crossing in the supernatural narratives. Type 1 is the crossing into “haunted” houses. This includes (intangible) human agency crossing into domestic spaces and revealing secrets and truths concealed by the scary, feigned ‘haunting’, thus exposing the hidden evil and the other house occupiers’ silenced, suffocated state. Type 2 is men crossing into female ghosts’ apparitional residences. The female ghosts allude to heart-breaking, traumatic experiences in socio-historical reality, evoking sympathetic concern for suffering individuals who are caught in social upheavals. Type 3 is the crossing from reality into the characters’ delusional/hallucinatory realities. While they physically remain in the empirical world, the characters’ abnormal perceptions lead them to exclusive, delirious, and quasi-supernatural experiences of reality. Their crossings blur the concrete boundaries between the real and the unreal on the mental level: their abnormal perceptions construct a significant, meaningful reality for them, which may be as real as the commonly regarded objective reality. Type 4 is the crossing into the netherworld modelled on the real world in the authors’ observation and bears a spectrum of satirised objects of the Republican society. The last type is immortal visitors crossing into the human world. This type satirises humanity’s vices and destructive potential. The primary sources demonstrate their writers’ witty passion to play with super--natural notions and imagery (such as ghosts, demons, and immortals) and stitch them into vivid, engaging scenes using techniques such as the gothic, the grotesque, and the satirical, in order to evoke sentiments such as terror, horror, disgust, dis--orientation, or awe, all in service of their insights into realist issues. The works also creatively tailor traditional Chinese modes and motifs, which exemplifies the revival of Republican interest in traditional cultural heritage. The supernatural narratives may amaze or disturb the reader at first, but what is more shocking, unpleasantly nudging, or thought-provoking is the problematic society and people’s lives that the supernatural (misunderstandings) eventually reveals. They present a more compre--hensive treatment of reality than Republican literature with its revolutionary consciousness surrounding class struggle. The critical perspectives of the supernatural narratives include domestic space, unacknowledged history and marginal individuals, abnormal mentality, and pervasive weaknesses in humanity. The crossing and supernatural narratives function as a means of better understanding the lived reality. This study gathers diverse primary sources written by Republican writers from various educational and political backgrounds and interprets them from a rare perspective, thus filling a research gap. It promotes a fuller view of supernatural narratives in twentieth-century Chinese literature. In terms of reflecting the social and personal reality of the Republican era, the supernatural narratives supplement the realist fiction of the time

    Heavy Metal’s Environmental Impact

    Get PDF
    Heavy metals are inorganic elements with something like a density of more than 5 g/cm3. Essential and non-essential heavy metals were divided into two groups based on their toxicity. Heavy metals, unlike organic pollutants, are non-biodegradable and tend to accumulate in living things. Many heavy metal ions are hazardous or carcinogenic. The majority of heavy metals, such as cadmium, copper, and zinc, are linked to pollution and hazardous concerns. There are more than 50 elements categorized as heavy metals, with 17 of them being extremely hazardous and easily accessible. Metal pollutants are often non-degradable and have no recognized homeostasis mechanism. Their mere presence in aquatic habitats is enough to have a direct or indirect impact on living systems. The anthropogenic pollution of heavy metals in ancient mining regions refers to areas where the concentration of one or more heavy metals exceeds normal values. Heavy metals disrupt cellular organelles and components in biological systems. Nanoscale zero-valent iron is a promising alternative for heavy metal cleanup. Heavy metal ions are poisonous, non-degradable, and tend to bioaccumulate and biomagnify. The purpose of this chapter is to display some heavy metals and the environmental impact of these minerals, which includes soil, plants, and humans

    The Adirondack Chronology

    Get PDF
    The Adirondack Chronology is intended to be a useful resource for researchers and others interested in the Adirondacks and Adirondack history.https://digitalworks.union.edu/arlpublications/1000/thumbnail.jp

    The influence of complex volcanic vent morphology on eruption dynamics

    Get PDF
    VulkanausbrĂŒche gelten als eine der spektakulĂ€rsten Naturgewalten unserer Erde. Gleichzeitig stellen sie jedoch auch eine Gefahr fĂŒr die menschliche Gesundheit und Infrastruktur dar. Aufgrund ihrer Dynamik und ihres unberechenbaren Charakters geht von explosiven VulkanausbrĂŒchen eine besonders große GefĂ€hrdung des Menschen und seiner Umwelt aus. Im Zuge eines explosiven Ausbruchs werden heiße Gase und Pyroklasten in die AtmosphĂ€re ausgeworfen. Obwohl das Monitoring aktiver Vulkane in den letzten Jahren immer weiter verbessert wurde, ist es immer noch schwierig eine konkrete Vorhersage zu den AusbrĂŒchen zu erstellen. Aufgrund ihrer KomplexitĂ€t ist das Verhalten von Vulkanen nicht kalkulierbar. Bis heute ist weder eine Beobachtung, noch eine Messung der unterirdischen Rahmenbedingungen möglich, welche den Ausbruch steuern. Trotz dieser UnwĂ€gbarkeiten unterliegen VulkanausbrĂŒche dennoch physikalischen GesetzmĂ€ĂŸigkeiten, sodass die Möglichkeit besteht, die Prozesse im Untergrund eines Vulkans zu modellieren oder durch Experimente zu beschreiben. Aufgrund der KomplexitĂ€t der Wechselwirkungen innerhalb des Systems Vulkan ist es erforderlich Experimente zunehmend realistischer zu gestalten. Sobald das ausgeworfene Material aus dem Krater austritt können wir den Ausbruch visuell Beobachten. In diesem Bereich ist das Verhalten des Ausbruchs vollstĂ€ndig von den Prozessen im Untergrund und von der Geometrie des Kraters abhĂ€ngig. Im Vergleich zu den symmetrischen Kraterformen, welche in Experimenten und Modellen oft angenommen werden, sind die Krater in der Natur deutlich unregelmĂ€ĂŸiger geformt. Ihre Geometrien sind oft eingekerbt und haben eine schrĂ€ge OberflĂ€che. Zudem können sich die Kratergeometrien innerhalb kĂŒrzester Zeit verĂ€ndern. Um den Einfluss der Prozesse im Untergrund zu verstehen mĂŒssen wir zuerst den Einfluss der beobachtbaren Parameter (z. B. Kratergeometrie) ergrĂŒnden. Schlussendlich wird ein tiefergehendes VerstĂ€ndnis der Parameter, die VulkanausbrĂŒche steuern, zu einem Fortschritt und der Verbesserung der GefĂ€hrdungsanalysen fĂŒhren. Um dies zu erreichen, habe ich Beobachtungen aus Feldkampagnen und Laborexperimenten kombiniert. ZunĂ€chst habe ich die Geometrien von Vulkankratern erfasst und deren zeitliche Entwicklung dokumentiert. Dazu haben ich die Geometrie der Krater in der Kraterterrasse des Strombolis in einer hohen Auflösung vermessen und die jeweils zugehörigen Explosionen beobachtet. Dabei konnte ich feststellen, dass sowohl die IntensitĂ€t, als auch die Art und die Richtung der AusbrĂŒche durch FormverĂ€nderungen der OberflĂ€chentopografie beeinflusst werden. Mittels Drohneneinsatz habe ich innerhalb eines Zeitraums von neun Monaten (Mai 2019–Januar 2020) fĂŒnf topografische DatensĂ€tze erstellt. In diesem Zeitraum war es möglich „normale“ Strombolianische AktivitĂ€t, starke AusbrĂŒche und sogar zwei Paroxysmen zu beobachten (3. Juli und 28. August 2019), sodass es möglich war, die verschiedenen Ausbruchstypen mit den vorherrschenden Ablagerungs- und Abtragungsprozessen zu verknĂŒpfen. Zudem konnte ich die Anzahl der aktiven Krater, deren Positionen sowie deren Umgestaltung nachverfolgen. Da VerĂ€nderungen der Kratergeometrie und der Kraterposition auf eine Modifikation des Ausbruchsgeschehens hinweisen können, sind auch dies wichtige Faktoren fĂŒr eine GefĂ€hrdungsanalyse. Die aus den Feldforschungen gewonnenen Daten zeigen deutlich die KomplexitĂ€t, Vielseitigkeit und VariabilitĂ€t der Formen vulkanischer Krater in einer nie da gewesenen zeitlichen und rĂ€umlichen Auflösung. DarĂŒber hinaus haben die Beobachtungen der VulkanausbrĂŒche deutlich gemacht, wie stark die Beziehung zwischen dem Krater, der Kratergeometrie und dem Auswurf von pyroklastischem Material ist. Diese Erkenntnis hat eine große Bedeutung fĂŒr die GefĂ€hrdungsanalyse, vor allem fĂŒr Gebiete, die potentiell durch vulkanische Bomben und pyroklastischem Fallout bedroht sind. Im Anschluss habe ich eine Reihe von Dekompressionsexperimenten mit Kratergeometrien durchgefĂŒhrt, welche auf den Beobachtungen am Stromboli aufbauen. Durch diese Experimente wurde der Zusammenhang zwischen Kratergeometrie und Ausbruchsdynamik bestĂ€tigt. Die verwendeten Geometrien haben eine geneigte OberflĂ€che mit einem Winkel von 5°, 15° und 30° und jeweils einer zylindrischen und einer trichterförmigen inneren Geometrie. Daraus ergeben sich sechs experimentelle Krater die mit folgenden experimentellen Bedingungen getestet wurden: Vier unterschiedliche StartdrĂŒcke (5, 8, 15 und 25 MPa) und zwei Gasvolumina (127.4cm3, 31.9cm3). Alle Experimente wurden bei Raumtemperatur und mit Argon durchgefĂŒhrt. Trotz des vertikalen Aufbaus konnte man auf beiden Seiten des Kraters unterschiedlich große Winkel des austretenden Gases beobachten. Weiterhin war der Gasstrahl geneigt. Die Richtung der Neigung wurde durch die innere Geometrie be- stimmt. Bei einer zylindrischen Geometrie neigte sich der Gasstrahl in die Einfallsrichtung der geneigten OberflĂ€che. Im Falle einer trichterförmigen inneren Geometrie neigt sich der Gasstrahl entgegen der Einfallsrichtung. Der Winkel des Gasaustritts war bei einer zylindrischen inneren Geometrie immer grĂ¶ĂŸer als bei der trichterförmigen Geometrie. Sowohl die Winkel des Gasaustritts als auch die Neigung des Gasstrahls zeigten eine starke Reaktion auf eine VerĂ€nderung der Druckbedingung und OberflĂ€chenneigung. Dabei zeigten sowohl der Austrittswinkel als auch die Neigung eine positive Korrelation mit dem Druck und der OberflĂ€chenneigung. Hohe Druckbedingungen haben außerdem dafĂŒr gesorgt, dass fĂŒr einen lĂ€ngeren Zeitraum ÜberdruckverhĂ€ltnisse am Kraterausgang herrschten. Ein höheres Gasvolumen hat grĂ¶ĂŸere Gasaustrittswinkel ermöglicht. Zuletzt habe ich die Dekompressionsexperimente durch den Einsatz von Partikeln ergĂ€nzt, um so den Auswurf von Gas und Partikeln wĂ€hrend eines explosiven Vulkanausbruchs nachzustellen. Dabei habe ich die beiden experimentellen Kratergeometrien aus den vorangegangenen Experimenten ausgewĂ€hlt, welche den stĂ€rksten Einfluss auf die Gasdynamik aufgezeigt haben. ZusĂ€tzlich habe ich eine dritte Kratergeometrie verwendet, die dem aktiven Krater S1 auf Stromboli nachempfunden ist. Die Geometrie entspricht der Kratergeometrie aus der Vermessung im Mai 2019. Die S1 Geometrie zeichnet sich durch einen asymmetrischen Öffnungswinkel aus (~10° auf einer Seite, ~40° auf der anderen Seite). ZusĂ€tzlich zu den drei Kratergeometrien wurden unterschiedliche Partikel verwendet (Schlacke und Bims), mit jeweils drei unterschiedlichen KorngrĂ¶ĂŸen (0.125–0.25, 0.5–1 und 1–2mm) und zwei Druckstufen (8 und 15MPa). Die Partikeldynamik, in der NĂ€he des experimentellen Kraters, wurde anhand der Winkel des Partikelauswurfs und der Geschwindigkeit der Partikel definiert und beschrieben. Dabei wurde festgestellt, dass die Geometrie des Kraters die Richtung und Neigung des Partikelauswurfswinkels und die Geschwindigkeit der Partikel bestimmt. Bei allen Kratergeometrien kam es zu einem asymmetrischen Partikelauswurf und im Falle von Bimspartikeln zudem zu einer ungleichmĂ€ĂŸigen Geschwindigkeitsverteilung. Die Kombination aus Daten aus Feldkampagnen, Experimenten mit Gas und Experimenten mit zusĂ€tzlichen Partikeln zeigte deutlich den starken Einfluss der Kratergeometrie auf Eruptionen. In der Natur, fĂŒhrt eine modifizierte Kratergeometrie zu einem verĂ€ndertem Auswurfsmuster der Pyroklasten. Im Labor haben komplexe Kratergeometrien zu geneigten Gasstrahlen, asymmetrischen Auswurfswinkeln von Gas- und Gaspartikeln und einer asymmetrischen Verteilung der Geschwindigkeit von Partikeln gefĂŒhrt. Auf Basis dieser Beobachtungen komme ich zu dem Schluss, dass asymmetrische Vulkankrater eine asymmetrische Verteilung von pyroklastischem Auswurf hervorrufen. Das fĂŒhrt zu einer bevorzugten Richtung fĂŒr vulkanischen Fallout — und falls es zu einer kollabierenden AusbruchsĂ€ule kommt — zu einer bevorzugten Richtung fĂŒr pyroklastische Ströme. Der technische Fortschritt durch Drohnen, Photogrammmetrie und 3D Druck bietet einige Chancen fĂŒr die Vulkanologie. Luftaufnahmen durch Drohnen ermöglichen eine schnelle, gĂŒnstige und sichere Vermessung von Vulkankratern, auch in Zeiten erhöhter AktivitĂ€t. Zusammen mit Photogrammmetrie und 3D Druck lassen sich realitĂ€tsnahe Kratergeometrien erzeugen, fĂŒr zunehmend realistische skalierte Laborexperimente.Volcanic eruptions are among the most violent displays of the Earth’s natural forces and threaten human health and infrastructure. Explosive eruptions are hazardous due to their impulsive and dynamic nature, ejecting gas and pyroclasts at high velocity and temperature into the atmosphere. In recent years, monitoring efforts have increased, but forecasting eruptions is still challenging as volcanoes are complex systems with the potential for inherently unpredictable behaviours. To date, the underlying boundary conditions are beyond observation and quantification. Still, they are constrained by physical laws and can be described through models and experiments. The complexity and interdependency of the parameters governing the dynamics of volcanic eruptions ask for increasingly realistic experiments to investigate the sub-surface conditions driving volcanic eruptions. Above the vent, in the near-vent region, the dynamics of explosive eruptions can first be visually observed. The characteristics at this stage are purely the result of the underlying boundary conditions and the exit (vent) geometry. Volcanic vents are rarely the symmetric features that are often assumed in models and experiments. They often exhibit highly irregular shapes with notched or slanted rims that can be transient. To eventually understand the unobservable boundary conditions, it is necessary to initially gain knowledge about the effect of the observable factors (i.e. vent geometry). This knowledge will ultimately improve the understanding of the parameters affecting an explosive event to develop accurate probabilistic hazard maps. To this end, a combination of field observations and laboratory experiments was used. First, I characterised vent and crater shape changes at a frequently erupting volcano (Stromboli) to collect high-resolution geometric data of volcanic vents and observe the related explosion dynamics. As a result of topographic changes, variable eruption intensity, style and directionality could be detected. Five topographic data sets were acquired by unoccupied aerial vehicles (UAVs) over nine months (May 2019-January 2020). During this period, changes associated with "normal" Strombolian activity, "major explosions" and paroxysmal episodes (3 July and 28 August 2019) occurred. Hence, the topographic data made it possible to link the predominant constructive and destructive processes to these eruption styles. Furthermore, the number and position of active vents changed significantly, which is a critical parameter for hazard assessment as vent geometry and position can be linked to shifts in eruptive mechanisms. These field surveys highlight the geometric complexity and variability of volcanic vents at an unprecedented spatiotemporal resolution. Additionally, the observations of explosions suggested the paramount influence of crater and vent geometry on pyroclast ejection characteristics, a fact that has strong implications for areas potentially affected by bomb impact and pyroclastic fall out. Secondly, I designed a series of shock-tube experiments incorporating the geometry elements observed at Stromboli to quantify the influence of vent geometry and several boundary conditions. These experiments validated the link between vent geometry and explosion dynamics that was observed in the field. The novel geometry element is an inclined exit plane of 5°, 15° and 30° slant angle combined with a cylindrical and diverging inner geometry resulting in six vent geometries. All experiments were conducted with gas-only (Argon) at room temperature, four different starting pressures (5, 8, 15, 25 MPa) and two reservoir volumes (127.4 cm3, 31.9 cm3). Despite the vertical setup, the slanted geometry yielded both a laterally variable gas spreading angle and an inclination of the jets. The inner geometry controlled the jet inclination towards the dip direction of the slanted exit plane (cylindrical) and against the dip direction of the slanted exit plane (diverging). Cylindrical vents produced larger gas spreading angles than diverging vents. Both gas spreading angle and jet inclination were highly sensitive to the experimental pressure and the slant angle. They had a positive correlation with maximum gas spreading angle and jet inclination. Additionally, the pressure was positively correlated with the maximum duration of underexpanded characteristics of the jet. The gas volume only showed a positive correlation with the maximum gas spreading angle. Thirdly, I added particles to the experiments to mimic the ejection of gas-particle jets during explosive volcanic eruptions. For this set of experiments, the two geometries with the 30° slant angle from the previous experimental series were used as they exhibited the strongest effect on the gas ejection dynamics. They were supplemented by a third vent that resembled the "real" geometry of Stromboli’s active S1 vent as it was mapped in May 2019 and fabricated by 3D printing. The S1’s geometry is characterised by a ~ 10° divergence on one side and a ~ 40° divergence on the other side. Besides three vent geometries, two types of particles (scoria and pumice), each with three different grain size distributions (0.125– 0.25, 0.5–1, 1–2 mm) and two starting pressures (8, 15 MPa) were used. The near-vent vent dynamics were characterised as a function of particle spreading angle and particle ejection velocity. The vent geometry governed the direction and the magnitude of particle spreading, and the velocity of particles. All geometries yielded asymmetric particle spreading as well as a non-uniform velocity distribution in experiments with pumice particles. The combination of field observations, gas-only and gas-particle experiments demonstrated the prime control exerted by vent geometry. In nature, a modification of the vent led to modified pyroclast ejection patterns. In the laboratory the complex geometries facilitated inclined gas jets, an asymmetric gas and particle spreading angle, and an asymmetric particle ejection velocity distribution. These findings suggest that the asymmetry of volcanic vents and/or craters can promote the asymmetric distribution of volcanic ejecta.Which, in turn, will lead to a preferred direction of volcanic fallout and — in case a column collapse occurs — to a preferred direction of the ensuing pyroclastic density currents. The availability of new technology like unoccupied aerial vehicles, photogrammetry and 3D printing provides several opportunities for the volcanological community. Aerial observations allow a fast, inexpensive and safe way to collect geometrical data of volcanic vents and craters, even in times of elevated volcanic activity. In combination with photogrammetry and 3D printing, "real" vents can be produced for increasingly realistic scaled laboratory experiments

    Water Managers’ Perceptions of the Utility of Seasonal Forecasts in Nevada

    Get PDF
    Nevada is the driest state in the United States and is subject to recurrent drought even without the influence of climate change. As a result, careful water management is critical in meeting the needs of the three million people who live in Nevada. Seasonal climate forecasts, such as Seasonal Outlooks produced by the Climate Prediction Center that predict average temperature and precipitation for three-month seasons with lead times of two weeks to 12 months. These outlooks could be a valuable resource for water managers in the state, providing the potential to improve streamflow forecasts and the understanding of drought progression. However, it is not known whether water managers in Nevada find these seasonal climate forecasts useful, how they use seasonal climate forecasts, or they even use the forecasts at all. To answer this question, we sent an online survey out to water managers – defined as people who “plan, develop, distribute, and manage the optimum use of water resources” (AWRA, 2022) – to determine their perceptions of seasonal forecasts. Survey results yielded 23 respondents. Three-fourths (74%, n = 17) of respondents were familiar with seasonal forecasts. More than 95% (n = 22) of the respondents indicated that they use seasonal precipitation forecasts, and 61% of respondents use seasonal temperature forecasts. Roughly 40% (n = 9) of water managers indicated that they viewed seasonal temperature forecasts as accurate or very accurate, whereas 30% (n = 7) of respondents considered precipitation outlooks as accurate or very accurate. Water managers considered temperature and precipitation outlooks generally useful, but there were some documented barriers to their use. Spatial and temporal scales are at a mismatch between water managers and seasonal forecasts, which was confirmed by a set of questions gaining water managers’ forecast time horizons and water management decisions. These questions revealed that water managers considered short-term forecasts, monthly being the most prominent, to be the most useful to them. Top management decisions included those dealing with water supply, outreach, and education. Future work should focus on further defining use and accessibility of seasonal forecasts, along with finding climate products that better align with water managers’ spatial and temporal scale needs

    Computational scientific discovery in psychology

    Get PDF
    Scientific discovery is a driving force for progress, involving creative problem-solving processes to further our understanding of the world. Historically, the process of scientific discovery has been intensive and time-consuming; however, advances in computational power and algorithms have provided an efficient route to make new discoveries. Complex tools using artificial intelligence (AI) can efficiently analyse data as well as generate new hypotheses and theories. Along with AI becoming increasingly prevalent in our daily lives and the services we access, its application to different scientific domains is becoming more widespread. For example, AI has been used for early detection of medical conditions, identifying treatments and vaccines (e.g., against COVID-19), and predicting protein structure. The application of AI in psychological science has started to become popular. AI can assist in new discoveries both as a tool that allows more freedom to scientists to generate new theories, and by making creative discoveries autonomously. Conversely, psychological concepts such as heuristics have refined and improved artificial systems. With such powerful systems, however, there are key ethical and practical issues to consider. This review addresses the current and future directions of computational scientific discovery generally and its applications in psychological science more specifically
    • 

    corecore