203 research outputs found

    Progress and Development Trend of Space Intelligent Robot Technology

    Get PDF
    Since space intelligent robots are not restricted by physiological conditions, it is an attractive choice for the development of automation technology to use them for space exploration and utilization. It is currently the key development direction of the major space powers over the world. This paper first investigates the robotic manipulators and humanoid robot systems for space station applications and reviews theories and methods for robots to achieve large-range stable motion and intelligent dexterous manipulation. Then, the intelligent robot systems for on-orbit satellite maintenance are reviewed, and the related technologies of multirobot collaboration are analyzed. Finally, we investigate the intelligent robot systems for on-orbit assembly of large-scale spatial structures and summarize the technologies of modular assembly and on-orbit manufacture. Overall, this paper reviews the technological progress and development trends of space robots, which provides a good reference for further technical research in this field

    Autonomous RPOD Technology Challenges for the Coming Decade

    Get PDF
    Rendezvous Proximity Operations and Docking (RPOD) technologies are important to a wide range of future space endeavors. This paper will review some of the recent and ongoing activities related to autonomous RPOD capabilities and summarize the current state of the art. Gaps are identified where future investments are necessary to successfully execute some of the missions likely to be conducted within the next ten years. A proposed RPOD technology roadmap that meets the broad needs of NASA's future missions will be outlined, and ongoing activities at OSFC in support of a future satellite servicing mission are presented. The case presented shows that an evolutionary, stair-step technology development program. including a robust campaign of coordinated ground tests and space-based system-level technology demonstration missions, will ultimately yield a multi-use main-stream autonomous RPOD capability suite with cross-cutting benefits across a wide range of future applications

    Towards Robotic On-Orbit Assembly of Large Space Telescopes: Mission Architectures, Concepts, and Analyses

    Get PDF
    Over the next two decades, unprecedented astronomy missions could be enabled by space telescopes larger than the James Webb Space Telescope. Commercially, large aperture space-based imaging systems will enable a new generation of Earth Observation missions for both science and surveillance programs. However, launching and operating such large telescopes in the extreme space environment poses practical challenges. One of the key design challenges is that very large mirrors (i.e. apertures larger than 3m) cannot be monolithically manufactured and, instead, a segmented design must be utilized to achieve primary mirror sizes of up to 100m. Even if such large primary mirrors could be made, it is impossible to stow them in the fairings of current and planned launch vehicles, e.g., SpaceX’s Starship reportedly has a 9m fairing diameter. Though deployment of a segmented telescope via a folded-wing design (as done with the James Webb Space Telescope) is one approach to overcoming this volumetric challenge, it is considered unfeasible for large apertures such as the 25m telescope considered in this study. Parallel studies conducted by NASA indicate that robotic on-orbit assembly (OOA) of these observatories offers the possibility, surprisingly, of reduced cost and risk for smaller telescopes rather than deploying them from single launch vehicles but this is not proven. Thus, OOA of large aperture astronomical and Earth Observation telescopes is of particular interest to various space agencies and commercial entities. In a new partnership with Surrey Satellite Technology Limited and Airbus Defence and Space, the Surrey Space Centre is developing the capability for autonomous robotic OOA of large aperture segmented telescopes. This paper presents the concept of operation and mission analysis for OOA of a 25m aperture telescope operating in the visible waveband of the electromagnetic spectrum; telescopes of this size will be of much value as it would permit 1m spatial resolution of a location on Earth from geostationary orbit. Further, the conceptual evaluation of robotically assembling 2m and 5m telescopes will be addressed; these missions are envisaged as essential technology demonstration precursors to the 25m imaging system

    NASA space station automation: AI-based technology review

    Get PDF
    Research and Development projects in automation for the Space Station are discussed. Artificial Intelligence (AI) based automation technologies are planned to enhance crew safety through reduced need for EVA, increase crew productivity through the reduction of routine operations, increase space station autonomy, and augment space station capability through the use of teleoperation and robotics. AI technology will also be developed for the servicing of satellites at the Space Station, system monitoring and diagnosis, space manufacturing, and the assembly of large space structures

    Downsizing an orbital space robot: A dynamic system based evaluation

    Get PDF
    Small space robots have the potential to revolutionise space exploration by facilitating the on-orbit assembly of infrastructure, in shorter time scales, at reduced costs. Their commercial appeal will be further improved if such a system is also capable of performing on-orbit servicing missions, in line with the current drive to limit space debris and prolong the lifetime of satellites already in orbit. Whilst there have been a limited number of successful demonstrations of technologies capable of these on-orbit operations, the systems remain large and bespoke. The recent surge in small satellite technologies is changing the economics of space and in the near future, downsizing a space robot might become be a viable option with a host of benefits. This industry wide shift means some of the technologies for use with a downsized space robot, such as power and communication subsystems, now exist. However, there are still dynamic and control issues that need to be overcome before a downsized space robot can be capable of undertaking useful missions. This paper first outlines these issues, before analyzing the effect of downsizing a system on its operational capability. Therefore presenting the smallest controllable system such that the benefits of a small space robot can be achieved with current technologies. The sizing of the base spacecraft and manipulator are addressed here. The design presented consists of a 3 link, 6 degrees of freedom robotic manipulator mounted on a 12U form factor satellite. The feasibility of this 12U space robot was evaluated in simulation and the in-depth results presented here support the hypothesis that a small space robot is a viable solution for in-orbit operations

    Large space structures and systems in the space station era: A bibliography with indexes (supplement 05)

    Get PDF
    Bibliographies and abstracts are listed for 1363 reports, articles, and other documents introduced into the NASA scientific and technical information system between January 1, 1991 and July 31, 1992. Topics covered include technology development and mission design according to system, interactive analysis and design, structural and thermal analysis and design, structural concepts and control systems, electronics, advanced materials, assembly concepts, propulsion and solar power satellite systems

    Concept for a Distributed, Modular, In-space Robotically Assembled, RF Communication Payload in GEO

    Get PDF
    In this paper, we discuss a concept for a Radio Frequency (RF) Ka band communications payload that is robotically assembled and serviced in space using a servicing vehicle such as the Robotic Servicing of Geosynchronous Satellites (RSGS) vehicle being developed by the Defense Advance Research Projects Agency (DARPA). Our work focuses on how to modularize a representative Ka band communications payload into discrete modules that are hosted on a persistent platform. In our concept, each module consists of a primary aperture and the associated RF and electronics required to serve a particular coverage area or type. These modules are notionally packaged in a form factor capable of launching as a secondary payload via an EELV Secondary Payload Adapter (ESPA) ring or a Payload Orbital Delivery System (PODS) module. The overall payload consists of an earth coverage module, regional coverage modules, high gain regional coverage modules, and a host interface unit (HIU). We discuss the notional capabilities and requirements of each module. We present two different architecture concepts corresponding to two different persistent platform concepts. In one concept, the persistent platform is made up of small, independent spacecraft that are connected together with structural members with communication channels. The payload modules are hosted on the individual spacecraft. In the second approach, the platform consists of a large central spacecraft with a structural truss that has power, communication and thermal loops. The payload modules are hosted on the truss through standard interfaces. We present aspects of the mission concept on how the payload may be modularized, launched (as secondary launch elements), acquired by the RSGS vehicle in space and assembled on to the persistent platform. We discuss the robotics aspects of assembly and servicing of the payload modules. A key aspect of this concept is the serviceability of the payload. Central to the modular and discrete payload design is an intent to refurbish the payload incrementally as technology evolves or the components fail. Existing geosynchronous communication satellites are designed and built as monolithic spacecraft which makes any servicing beyond refueling fairly complicated. This makes it hard to take advantage of the post launch evolution in technology, particularly in the electronics elements. Our concept is aimed at modularizing the payload such that the modules, particularly the electronics elements, can be easily serviced using the RSGS vehicle. Our concept attempts to take advantage of the long service life of high reliability system components in the core satellite bus while allowing rapid expansion and upgrading of the communications payload through the addition and replacement of individual payload modules
    corecore