71 research outputs found

    Applicationof Computer Visionfor Polishing RobotinAutomotive Manufacturing Industries

    Get PDF
    Polishing is a highly skilled manufacturing process with a lot of constraints and interaction with environment. In general, the purpose of polishing is to get the uniform surface roughness distributed evenly throughout part’s surface. In order to reduce the polishing time and cope with the shortage of skilled workers, robotic polishing technology has been investigated. This paper studies about vision system to measure surface defects that have been characterized to some level of surface roughness. The surface defects data have learned using artificial neural networks to give a decision in order to move the actuator of arm robot. Force and rotation time have chosen as output parameters of artificial neural networks. Results shows that although there is a considerable change in both parameter values acquired from vision data compared to real data, it is still possible to obtain surface defects characterization using vision sensor to a certain limit of accuracy. The overall results of this research would encourage further developments in this area to achieve robust computer vision based surface measurement systems for industrial robotic, especially in polishing process.Keywords: polishing robot, vision sensor, surface defects, and artificial neural network

    Computer Vision Based Robotic Polishing Using Artificial Neural Networks

    Get PDF
    Polishing is a highly skilled manufacturing process with a lot of constraints and interaction with environment. In general, the purpose of polishing is to get the uniform surface roughness distributed evenly throughout part’s surface. In order to reduce the polishing time and cope with the shortage of skilled workers, robotic polishing technology has been investigated. This paper studies about vision system to measure surface defects that have been characterized to some level of surface roughness. The surface defects data have learned using artificial neural networks to give a decision in order to move the actuator of arm robot. Force and rotation time have chosen as output parameters of artificial neural networks. Results shows that although there is a considerable change in both parameter values acquired from vision data compared to real data, it is still possible to obtain surface defects characterization using vision sensor to a certain limit of accuracy. The overall results of this research would encourage further developments in this area to achieve robust computer vision based surface measurement systems for industrial robotic, especially in polishing proces

    Robots in machining

    Get PDF
    Robotic machining centers offer diverse advantages: large operation reach with large reorientation capability, and a low cost, to name a few. Many challenges have slowed down the adoption or sometimes inhibited the use of robots for machining tasks. This paper deals with the current usage and status of robots in machining, as well as the necessary modelling and identification for enabling optimization, process planning and process control. Recent research addressing deburring, milling, incremental forming, polishing or thin wall machining is presented. We discuss various processes in which robots need to deal with significant process forces while fulfilling their machining task

    Delta robot motion control

    Get PDF
    Abstract. The aim of this thesis is to generate a functional motion control to a delta robot. The motion control is based on solving the inverse kinematics problem of the delta robot. This solution is then used to form the control logic of the robot. In addition, this thesis also introduces forward kinematics solution models and, the most common industrial robots and their features. Applications of industrial robots, as well as the industries that utilize them the most are also examined. This thesis introduces a self-made delta robot and its motion control design. The functionality of motion control is studied by measuring the positioning accuracy as well as the repeatability of the self-made delta robot in the xy-plane. Accuracy measurements are performed using a separate measuring device. A small-scale comparison between the positioning accuracy of a self-made and a commercial delta robot is implemented to find out how closely can the performance of a commercial delta robot be reproduced with a self-made delta robot. The results of this thesis indicate that the inverse kinematics model of the delta robot as well as the motion control actually work. The results demonstrate that the performance of the self-made delta robot is at a good level and that further development is worthwhile. There was not enough measurement data to perform a proper comparison between the self-made and the commercial delta robot. However, despite the narrow sampling, it is assumed that the positioning accuracy of the self-made delta robot is not yet at the same level as that of the commercial product. The accuracy of the self-made delta robot presented in this thesis can be improved by developing the feeding of the robot’s drive commands. The materials used in the construction of the robot as well as the quality of the joints also affect the accuracy. The inverse kinematics model of the delta robot presented in this thesis can be easily scaled to different sized delta robots depending on the application. Motion control can be utilized in the control of delta robots implemented with a similar mechanical structure.Delta-robotin liikkeenohjaus. Tiivistelmä. Tämän työn tarkoituksena on suunnitella delta-robotille toimiva liikkeenohjaus. Liikkeenohjauksen rakentaminen perustuu delta-robotin käänteiskinematiikan ratkaisemiseen. Käänteiskinematiikan ratkaisua hyödynnetään ohjauslogiikan toteutuksessa. Työssä tutustutaan myös suorankinematiikan ratkaisumalleihin, sekä esitellään yleisimpiä teollisuusrobotteja ja niiden ominaisuuksia. Työssä tarkastellaan myös teollisuusrobottien käyttökohteita, sekä niitä eniten hyödyntävät teollisuudenalat. Työssä tutustutaan omavalmisteiseen delta-robottiin ja sen liikkeenohjauksen suunnitteluun. Liikkeenohjauksen toimivuutta tutkitaan mittaamalla omavalmisteisen delta-robotin paikoitustarkkuus, sekä toistotarkkuus xy-tasossa. Tarkkuusmittaukset toteutetaan käyttämällä erillistä mittalaitetta. Työssä pyritään myös selvittämään kuinka lähelle kaupallisen delta-robotin suorituskykyä voidaan päästä omavalmisteisella delta-robotilla. Työssä toteutetaan pienimuotoinen vertailu omavalmisteisen ja kaupallisen delta-robotin paikoitustarkkuuden välillä. Työn tulokset osoittavat, että delta-robotin käänteiskinematiikan malli, sekä liikkeenohjaus toimivat. Tuloksista selviää, että omavalmisteisen delta-robotin suorituskyky on hyvällä tasolla ja sen kehittämistä kannattaa jatkaa. Omavalmisteisen ja kaupallisen delta-robotin kunnolliseen vertailuun ei saatu riittävästi dataa. Suppeasta otannasta huolimatta on kuitenkin oletettavaa, että omavalmisteisen delta-robotin paikoitustarkkuus ei vielä yllä samalle tasolle kaupallisen tuotteen kanssa. Työssä esitellyn omavalmisteisen delta-robotin tarkkuutta saadaan parannettua kehittämällä robotin ajokomentojen syöttämistä. Myös robotin rakenteessa käytetyt materiaalit, sekä nivelten laadukkuus vaikuttavat tarkkuuteen. Työssä esitetty delta-robotin käänteiskinematiikan malli on helposti skaalattavissa myös erikokoisiin delta-robotteihin käyttökohteesta riippuen. Liikkeenohjausta voidaan hyödyntää vastaavalla mekaanisella rakenteella toteutettujen delta-robottien ohjauksessa

    Human-Robot Collaboration: Safety by Design

    Get PDF
    High payload industrial robots, unlike collaborative robots are not designed to work together with humans. Collaboration can only happen in situations, where the human and robot is separated with a distance, which allows safety sensors to stop the robot system in any point if the human is in too close proximity of the robot. Safety sensors cannot decide over risks, consequences, neither any counter measures to prevent undesired outcome (e.g. collision between human and robot). Safety sensors are only reacting on proximity and can only give severity signal to the robotic system (e.g. no human, slow speed, full stop). This paper presents a new way to address safety sensors: voxel based, dynamic, collision state-space monitoring for human-robot collaboration with high payload robots. The general architecture and some initial test are presented, along with introduction of the problem statement.acceptedVersio

    COMPUTER VISION BASED ROBOTIC POLISHING USING ARTIFICIAL NEURAL NETWORKS

    Get PDF
    Polishing is a highly skilled manufacturing process with a lot of constraints and interaction with environment. In general, the purpose of polishing is to get the uniform surface roughness distributed evenly throughout part’s surface. In order to reduce the polishing time and cope with the shortage of skilled workers, robotic polishing technology has been investigated. This paper studies about vision system to measure surface defects that have been characterized to some level of surface roughness. The surface defects data have learned using artificial neural networks to give a decision in order to move the actuator of arm robot. Force and rotation time have chosen as output parameters of artificial neural networks. Results shows that although there is a considerable change in both parameter values acquired from vision data compared to real data, it is still possible to obtain surface defects characterization using vision sensor to a certain limit of accuracy. The overall results of this research would encourage further developments in this area to achieve robust computer vision based surface measurement systems for industrial robotic, especially in polishing process

    Contour Tracking Control for Mobile Robots applicable to Large-scale Assembly and Additive Manufacturing in Construction

    Get PDF
    In the construction industry, as well as during the assembly of large-scale components, the required workspaces usually cannot be served by a stationary robot. Instead, mobile robots are used to increase the accessible space. Here, the problem arises that the accuracy of such systems is not sufficient to meet the tolerance requirements of the components to be produced. Furthermore, there is an additional difficulty in the trajectory planning process since the exact dimensions of the pre-manufactured parts are unknown. Hence, existing static planning methods cannot be exerted on every application. Recent approaches present dynamic planning algorithms based on specific component characteristics. For example, the latest methods follow the contour by a force-controlled motion or detect features with a camera. However, in several applications such as welding or additive manufacturing in construction, no contact force is generated that could be controlled. Vision-based approaches are generally restricted by varying materials and lighting conditions, often found in large-scale construction. For these reasons, we propose a more robust approach without measuring contact forces, which, for example, applies to large-scale additive manufacturing. We based our algorithm on a high-precision 2D line laser, capable of detecting different feature contours regardless of material or lightning. The laser is mounted to the robot's end-effector and provides a depth profile of the component's surface. From this depth data, we determine the target contour and control the manipulator to follow it. Simultaneously we vary the robot's speed to adjust the feed rate depending on the contour's shape, maintaining a constant material application rate. As a proof of concept, we apply the algorithm to the additive manufacturing of two-layer linear structures made from spray PU foam. When making these structures, each layer must be positioned precisely on the previous layer to obtain a straight wall and prevent elastic buckling or plastic collapse. Initial experiments show improved layer alignment within 10 % of the layer width, as well as better layer height consistency and process reliability

    MAGSEAL Edge Breaking Safety Device

    Get PDF
    Team 22 was approached by the Magnetic Seal Corporation to solve a problem: develop simple electro-mechanical safety guarding for an edge-breaking and chamfering lathe. To accomplish this, the current situation was thoroughly researched, the machine inspected by the team, and a preliminary patent search conducted to survey the current body of knowledge for machine guarding. Through lessons learned from this literature search, including mounting methods, shape considerations, and a means to electrically link the guard engagement to machine operation, 120 concepts were generated by the team and classified into four groups. A Quality Function Deployment comparison was performed and in addition to sponsor feedback, a preliminary design for the guard was modeled, drawn, and prototyped. This design uses a steel frame to hold interchangeable polycarbonate panes with three con- toured holes cut therein. One hole is provided for the operator to break the outside diameter of a part, another hole expressly for the inside diameter, and a relief by which a grinding wheel can approach and apply a chamfer feature into the part at variable angles. The holes are arranged and sized so that an operator cannot fit both edge-breaking stone and finger at once, and were a slip to occur, the hand would naturally move either against the frame wherein the pane would prevent contact, or away from the machine entirely. Aluminum sheathing is used to fully enclose the operation and prevent egress of debris or dust into the operator area. A two pin support approach was theorized, but not prototyped, for attachment of the guard to the machine. Through inspection of this prototype and simulation within a faithful 3-D replica of the edge-breaking machine, this design was verified to fulfill MAGSEAL\u27s requirements. The use of the safety guard will not increase cycle time and hypothesized to not be an inconvenience to the operator. Additional work will be carried out to fit the device to the lathe, incorporate electrical integration into the power system, and adapt the guard to the full range of processed parts
    • …
    corecore