332 research outputs found

    Joint Energy Efficient and QoS-aware Path Allocation and VNF Placement for Service Function Chaining

    Full text link
    Service Function Chaining (SFC) allows the forwarding of a traffic flow along a chain of Virtual Network Functions (VNFs, e.g., IDS, firewall, and NAT). Software Defined Networking (SDN) solutions can be used to support SFC reducing the management complexity and the operational costs. One of the most critical issues for the service and network providers is the reduction of energy consumption, which should be achieved without impact to the quality of services. In this paper, we propose a novel resource (re)allocation architecture which enables energy-aware SFC for SDN-based networks. To this end, we model the problems of VNF placement, allocation of VNFs to flows, and flow routing as optimization problems. Thereafter, heuristic algorithms are proposed for the different optimization problems, in order find near-optimal solutions in acceptable times. The performance of the proposed algorithms are numerically evaluated over a real-world topology and various network traffic patterns. The results confirm that the proposed heuristic algorithms provide near optimal solutions while their execution time is applicable for real-life networks.Comment: Extended version of submitted paper - v7 - July 201

    Exploring Path Computation Techniques in Software-Defined Networking: A Review and Performance Evaluation of Centralized, Distributed, and Hybrid Approaches

    Get PDF
    Software-Defined Networking (SDN) is a networking paradigm that allows network administrators to dynamically manage network traffic flows and optimize network performance. One of the key benefits of SDN is the ability to compute and direct traffic along efficient paths through the network. In recent years, researchers have proposed various SDN-based path computation techniques to improve network performance and reduce congestion. This review paper provides a comprehensive overview of SDN-based path computation techniques, including both centralized and distributed approaches. We discuss the advantages and limitations of each approach and provide a critical analysis of the existing literature. In particular, we focus on recent advances in SDN-based path computation techniques, including Dynamic Shortest Path (DSP), Distributed Flow-Aware Path Computation (DFAPC), and Hybrid Path Computation (HPC). We evaluate three SDN-based path computation algorithms: centralized, distributed, and hybrid, focusing on optimal path determination for network nodes. Test scenarios with random graph simulations are used to compare their performance. The centralized algorithm employs global network knowledge, the distributed algorithm relies on local information, and the hybrid approach combines both. Experimental results demonstrate the hybrid algorithm's superiority in minimizing path costs, striking a balance between optimization and efficiency. The centralized algorithm ranks second, while the distributed algorithm incurs higher costs due to limited local knowledge. This research offers insights into efficient path computation and informs future SDN advancements. We also discuss the challenges associated with implementing SDN-based path computation techniques, including scalability, security, and interoperability. Furthermore, we highlight the potential applications of SDN-based path computation techniques in various domains, including data center networks, wireless networks, and the Internet of Things (IoT). Finally, we conclude that SDN-based path computation techniques have the potential to significantly improvement in-order to improve network performance and reduce congestion. However, further research is needed to evaluate the effectiveness of these techniques under different network conditions and traffic patterns. With the rapid growth of SDN technology, we expect to see continued development and refinement of SDN-based path computation techniques in the future
    • …
    corecore