13,033 research outputs found

    Koopman operator-based model reduction for switched-system control of PDEs

    Full text link
    We present a new framework for optimal and feedback control of PDEs using Koopman operator-based reduced order models (K-ROMs). The Koopman operator is a linear but infinite-dimensional operator which describes the dynamics of observables. A numerical approximation of the Koopman operator therefore yields a linear system for the observation of an autonomous dynamical system. In our approach, by introducing a finite number of constant controls, the dynamic control system is transformed into a set of autonomous systems and the corresponding optimal control problem into a switching time optimization problem. This allows us to replace each of these systems by a K-ROM which can be solved orders of magnitude faster. By this approach, a nonlinear infinite-dimensional control problem is transformed into a low-dimensional linear problem. In situations where the Koopman operator can be computed exactly using Extended Dynamic Mode Decomposition (EDMD), the proposed approach yields optimal control inputs. Furthermore, a recent convergence result for EDMD suggests that the approach can be applied to more complex dynamics as well. To illustrate the results, we consider the 1D Burgers equation and the 2D Navier--Stokes equations. The numerical experiments show remarkable performance concerning both solution times and accuracy.Comment: arXiv admin note: text overlap with arXiv:1801.0641

    Consistent Approximations for the Optimal Control of Constrained Switched Systems

    Full text link
    Though switched dynamical systems have shown great utility in modeling a variety of physical phenomena, the construction of an optimal control of such systems has proven difficult since it demands some type of optimal mode scheduling. In this paper, we devise an algorithm for the computation of an optimal control of constrained nonlinear switched dynamical systems. The control parameter for such systems include a continuous-valued input and discrete-valued input, where the latter corresponds to the mode of the switched system that is active at a particular instance in time. Our approach, which we prove converges to local minimizers of the constrained optimal control problem, first relaxes the discrete-valued input, then performs traditional optimal control, and then projects the constructed relaxed discrete-valued input back to a pure discrete-valued input by employing an extension to the classical Chattering Lemma that we prove. We extend this algorithm by formulating a computationally implementable algorithm which works by discretizing the time interval over which the switched dynamical system is defined. Importantly, we prove that this implementable algorithm constructs a sequence of points by recursive application that converge to the local minimizers of the original constrained optimal control problem. Four simulation experiments are included to validate the theoretical developments

    Consistent approximations of the zeno behaviour in affine-type switched dynamic systems

    Get PDF
    This paper proposes a new theoretic approach to a specific interaction of continuous and discrete dynamics in switched control systems known as a Zeno behaviour. We study executions of switched control systems with affine structure that admit infinitely many discrete transitions on a finite time interval. Although the real world processes do not present the corresponding behaviour, mathematical models of many engineering systems may be Zeno due to the used formal abstraction. We propose two useful approximative approaches to the Zeno dynamics, namely, an analytic technique and a variational description of this phenomenon. A generic trajectory associated with the Zeno dynamics can finally be characterized as a result of a specific projection or/and an optimization procedure applied to the original dynamic model. The obtained analytic and variational techniques provide an effective methodology for constructive approximations of the general Zeno-type behaviour. We also discuss shortly some possible applications of the proposed approximation schemes

    Forward Invariant Cuts to Simplify Proofs of Safety

    Full text link
    The use of deductive techniques, such as theorem provers, has several advantages in safety verification of hybrid sys- tems; however, state-of-the-art theorem provers require ex- tensive manual intervention. Furthermore, there is often a gap between the type of assistance that a theorem prover requires to make progress on a proof task and the assis- tance that a system designer is able to provide. This paper presents an extension to KeYmaera, a deductive verification tool for differential dynamic logic; the new technique allows local reasoning using system designer intuition about per- formance within particular modes as part of a proof task. Our approach allows the theorem prover to leverage for- ward invariants, discovered using numerical techniques, as part of a proof of safety. We introduce a new inference rule into the proof calculus of KeYmaera, the forward invariant cut rule, and we present a methodology to discover useful forward invariants, which are then used with the new cut rule to complete verification tasks. We demonstrate how our new approach can be used to complete verification tasks that lie out of the reach of existing deductive approaches us- ing several examples, including one involving an automotive powertrain control system.Comment: Extended version of EMSOFT pape
    corecore