73,336 research outputs found

    Adaptive Multi-Camera System for Real Time Object Detection

    Get PDF
    In this paper we present an adaptive multi-camera system for real time object detection able to efficiently adjust the computational requirements of video processing blocks to the available processing power and the activity of the scene. The system is based on a two level adaptation strategy that works at local and at global level. Object detection is based on a Gaussian mixtures model background subtraction algorithm. Results show that the system can efficiently adapt the algorithm parameters without a significant loss in the detection accuracy

    The hippocampus and cerebellum in adaptively timed learning, recognition, and movement

    Full text link
    The concepts of declarative memory and procedural memory have been used to distinguish two basic types of learning. A neural network model suggests how such memory processes work together as recognition learning, reinforcement learning, and sensory-motor learning take place during adaptive behaviors. To coordinate these processes, the hippocampal formation and cerebellum each contain circuits that learn to adaptively time their outputs. Within the model, hippocampal timing helps to maintain attention on motivationally salient goal objects during variable task-related delays, and cerebellar timing controls the release of conditioned responses. This property is part of the model's description of how cognitive-emotional interactions focus attention on motivationally valued cues, and how this process breaks down due to hippocampal ablation. The model suggests that the hippocampal mechanisms that help to rapidly draw attention to salient cues could prematurely release motor commands were not the release of these commands adaptively timed by the cerebellum. The model hippocampal system modulates cortical recognition learning without actually encoding the representational information that the cortex encodes. These properties avoid the difficulties faced by several models that propose a direct hippocampal role in recognition learning. Learning within the model hippocampal system controls adaptive timing and spatial orientation. Model properties hereby clarify how hippocampal ablations cause amnesic symptoms and difficulties with tasks which combine task delays, novelty detection, and attention towards goal objects amid distractions. When these model recognition, reinforcement, sensory-motor, and timing processes work together, they suggest how the brain can accomplish conditioning of multiple sensory events to delayed rewards, as during serial compound conditioning.Air Force Office of Scientific Research (F49620-92-J-0225, F49620-86-C-0037, 90-0128); Advanced Research Projects Agency (ONR N00014-92-J-4015); Office of Naval Research (N00014-91-J-4100, N00014-92-J-1309, N00014-92-J-1904); National Institute of Mental Health (MH-42900

    Investigations in adaptive processing of multispectral data

    Get PDF
    Adaptive data processing procedures are applied to the problem of classifying objects in a scene scanned by multispectral sensor. These procedures show a performance improvement over standard nonadaptive techniques. Some sources of error in classification are identified and those correctable by adaptive processing are discussed. Experiments in adaptation of signature means by decision-directed methods are described. Some of these methods assume correlation between the trajectories of different signature means; for others this assumption is not made

    Integrating Symbolic and Neural Processing in a Self-Organizing Architechture for Pattern Recognition and Prediction

    Full text link
    British Petroleum (89A-1204); Defense Advanced Research Projects Agency (N00014-92-J-4015); National Science Foundation (IRI-90-00530); Office of Naval Research (N00014-91-J-4100); Air Force Office of Scientific Research (F49620-92-J-0225

    Impact of adversarial examples on deep learning models for biomedical image segmentation

    Get PDF
    Deep learning models, which are increasingly being used in the field of medical image analysis, come with a major security risk, namely, their vulnerability to adversarial examples. Adversarial examples are carefully crafted samples that force machine learning models to make mistakes during testing time. These malicious samples have been shown to be highly effective in misguiding classification tasks. However, research on the influence of adversarial examples on segmentation is significantly lacking. Given that a large portion of medical imaging problems are effectively segmentation problems, we analyze the impact of adversarial examples on deep learning-based image segmentation models. Specifically, we expose the vulnerability of these models to adversarial examples by proposing the Adaptive Segmentation Mask Attack (ASMA). This novel algorithm makes it possible to craft targeted adversarial examples that come with (1) high intersection-over-union rates between the target adversarial mask and the prediction and (2) with perturbation that is, for the most part, invisible to the bare eye. We lay out experimental and visual evidence by showing results obtained for the ISIC skin lesion segmentation challenge and the problem of glaucoma optic disc segmentation. An implementation of this algorithm and additional examples can be found at https://github.com/utkuozbulak/adaptive-segmentation-mask-attack

    Modulating Image Restoration with Continual Levels via Adaptive Feature Modification Layers

    Full text link
    In image restoration tasks, like denoising and super resolution, continual modulation of restoration levels is of great importance for real-world applications, but has failed most of existing deep learning based image restoration methods. Learning from discrete and fixed restoration levels, deep models cannot be easily generalized to data of continuous and unseen levels. This topic is rarely touched in literature, due to the difficulty of modulating well-trained models with certain hyper-parameters. We make a step forward by proposing a unified CNN framework that consists of few additional parameters than a single-level model yet could handle arbitrary restoration levels between a start and an end level. The additional module, namely AdaFM layer, performs channel-wise feature modification, and can adapt a model to another restoration level with high accuracy. By simply tweaking an interpolation coefficient, the intermediate model - AdaFM-Net could generate smooth and continuous restoration effects without artifacts. Extensive experiments on three image restoration tasks demonstrate the effectiveness of both model training and modulation testing. Besides, we carefully investigate the properties of AdaFM layers, providing a detailed guidance on the usage of the proposed method.Comment: Accepted by CVPR 2019 (oral); code is available: https://github.com/hejingwenhejingwen/AdaF
    corecore