83,101 research outputs found

    Cover Tree Bayesian Reinforcement Learning

    Get PDF
    This paper proposes an online tree-based Bayesian approach for reinforcement learning. For inference, we employ a generalised context tree model. This defines a distribution on multivariate Gaussian piecewise-linear models, which can be updated in closed form. The tree structure itself is constructed using the cover tree method, which remains efficient in high dimensional spaces. We combine the model with Thompson sampling and approximate dynamic programming to obtain effective exploration policies in unknown environments. The flexibility and computational simplicity of the model render it suitable for many reinforcement learning problems in continuous state spaces. We demonstrate this in an experimental comparison with least squares policy iteration

    Sample Efficient Policy Search for Optimal Stopping Domains

    Full text link
    Optimal stopping problems consider the question of deciding when to stop an observation-generating process in order to maximize a return. We examine the problem of simultaneously learning and planning in such domains, when data is collected directly from the environment. We propose GFSE, a simple and flexible model-free policy search method that reuses data for sample efficiency by leveraging problem structure. We bound the sample complexity of our approach to guarantee uniform convergence of policy value estimates, tightening existing PAC bounds to achieve logarithmic dependence on horizon length for our setting. We also examine the benefit of our method against prevalent model-based and model-free approaches on 3 domains taken from diverse fields.Comment: To appear in IJCAI-201

    Taxonomic evidence applying intelligent information algorithm and the principle of maximum entropy: the case of asteroids families

    Get PDF
    The Numeric Taxonomy aims to group operational taxonomic units in clusters (OTUs or taxons or taxa), using the denominated structure analysis by means of numeric methods. These clusters that constitute families are the purpose of this series of projects and they emerge of the structural analysis, of their phenotypical characteristic, exhibiting the relationships in terms of grades of similarity of the OTUs, employing tools such as i) the Euclidean distance and ii) nearest neighbor techniques. Thus taxonomic evidence is gathered so as to quantify the similarity for each pair of OTUs (pair-group method) obtained from the basic data matrix and in this way the significant concept of spectrum of the OTUs is introduced, being based the same one on the state of their characters. A new taxonomic criterion is thereby formulated and a new approach to Computational Taxonomy is presented, that has been already employed with reference to Data Mining, when apply of Machine Learning techniques, in particular to the C4.5 algorithms, created by Quinlan, the degree of efficiency achieved by the TDIDT familyŽs algorithms when are generating valid models of the data in classification problems with the Gain of Entropy through Maximum Entropy Principle.Fil: Perichinsky, Gregorio. Universidad de Buenos Aires. Facultad de Ingeniería; ArgentinaFil: Jiménez Rey, Elizabeth Miriam. Universidad de Buenos Aires. Facultad de Ingeniería; ArgentinaFil: Grossi, María Delia. Universidad de Buenos Aires. Facultad de Ingeniería; ArgentinaFil: Vallejos, Félix Anibal. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; ArgentinaFil: Servetto, Arturo Carlos. Universidad de Buenos Aires. Facultad de Ingeniería; ArgentinaFil: Orellana, Rosa Beatriz. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Plastino, Ángel Luis. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Física; Argentin

    Verifiable Reinforcement Learning via Policy Extraction

    Full text link
    While deep reinforcement learning has successfully solved many challenging control tasks, its real-world applicability has been limited by the inability to ensure the safety of learned policies. We propose an approach to verifiable reinforcement learning by training decision tree policies, which can represent complex policies (since they are nonparametric), yet can be efficiently verified using existing techniques (since they are highly structured). The challenge is that decision tree policies are difficult to train. We propose VIPER, an algorithm that combines ideas from model compression and imitation learning to learn decision tree policies guided by a DNN policy (called the oracle) and its Q-function, and show that it substantially outperforms two baselines. We use VIPER to (i) learn a provably robust decision tree policy for a variant of Atari Pong with a symbolic state space, (ii) learn a decision tree policy for a toy game based on Pong that provably never loses, and (iii) learn a provably stable decision tree policy for cart-pole. In each case, the decision tree policy achieves performance equal to that of the original DNN policy

    Exploring helical dynamos with machine learning

    Full text link
    We use ensemble machine learning algorithms to study the evolution of magnetic fields in magnetohydrodynamic (MHD) turbulence that is helically forced. We perform direct numerical simulations of helically forced turbulence using mean field formalism, with electromotive force (EMF) modeled both as a linear and non-linear function of the mean magnetic field and current density. The form of the EMF is determined using regularized linear regression and random forests. We also compare various analytical models to the data using Bayesian inference with Markov Chain Monte Carlo (MCMC) sampling. Our results demonstrate that linear regression is largely successful at predicting the EMF and the use of more sophisticated algorithms (random forests, MCMC) do not lead to significant improvement in the fits. We conclude that the data we are looking at is effectively low dimensional and essentially linear. Finally, to encourage further exploration by the community, we provide all of our simulation data and analysis scripts as open source IPython notebooks.Comment: accepted by A&A, 11 pages, 6 figures, 3 tables, data + IPython notebooks: https://github.com/fnauman/ML_alpha
    • 

    corecore