322 research outputs found

    Using structure from motion for stockpile inventory in the forest industry

    Get PDF
    Supply line management is a big factor in the success of any forest company’s ability to produce competitive forest products from raw materials. To achieve an efficient and profitable procurement of these raw materials it is important to have satisfactory inventory of the resources throughout the supply line. The present method for inventory of stockpiles in lumberyards and terminals is a manual mensuration process with subjective assessments of the stockpiles. The precision requirement of today is that the result needs to be within 10 % of the true value. The aim of this study is to test if the volume estimations can be made using Structure from Motion (SfM) for mantle volume estimations and image segmentation for wood proportion assessment. The traditional wood proportion estimation was also used for the final volume estimations thus two results are compared to each stockpile. The study was conducted on four stockpiles of two different assortments of lumber at Norra Skogsägarnas sawmill “Sävarsågen” with assistance from VMF Nord for reference data to compare the final volume estimations with. A terrestrial laser scanner was used on one of the stockpiles for validation of the mantel model produced by the SfM process. The final wood volume from the SfM process in combination with the traditional wood proportion assessment made overestimations between 5.78 % and 25.56 % of the true value. Two out of the four piles made volume estimations in accordance to present standards. For the volume estimations using image segmentation for assessing the solid wood proportion the accuracy ranged from -0.04 % to 3.58 % of the real value. All four estimations was within present requirements using image analysis. This study concludes that SfM is a viable option for stockpile inventory that replicates present day methods but with the possibility of superior accuracy in measurement of the mantle volume. Also the method has the possibility of being conducted objectively

    lidR : an R package for analysis of Airborne Laser Scanning (ALS) data

    Get PDF
    Airborne laser scanning (ALS) is a remote sensing technology known for its applicability in natural resources management. By quantifying the three-dimensional structure of vegetation and underlying terrain using laser technology, ALS has been used extensively for enhancing geospatial knowledge in the fields of forestry and ecology. Structural descriptions of vegetation provide a means of estimating a range of ecologically pertinent attributes, such as height, volume, and above-ground biomass. The efficient processing of large, often technically complex datasets requires dedicated algorithms and software. The continued promise of ALS as a tool for improving ecological understanding is often dependent on user-created tools, methods, and approaches. Due to the proliferation of ALS among academic, governmental, and private-sector communities, paired with requirements to address a growing demand for open and accessible data, the ALS community is recognising the importance of free and open-source software (FOSS) and the importance of user-defined workflows. Herein, we describe the philosophy behind the development of the lidR package. Implemented in the R environment with a C/C++ backend, lidR is free, open-source and cross-platform software created to enable simple and creative processing workflows for forestry and ecology communities using ALS data. We review current algorithms used by the research community, and in doing so raise awareness of current successes and challenges associated with parameterisation and common implementation approaches. Through a detailed description of the package, we address the key considerations and the design philosophy that enables users to implement user-defined tools. We also discuss algorithm choices that make the package representative of the ‘state-of-the-art' and we highlight some internal limitations through examples of processing time discrepancies. We conclude that the development of applications like lidR are of fundamental importance for developing transparent, flexible and open ALS tools to ensure not only reproducible workflows, but also to offer researchers the creative space required for the progress and development of the discipline

    Assessing wood properties in standing timber with laser scanning

    Get PDF
    Managed forests play crucial roles in ongoing climatic and environmental changes. Among other things, wood is capable of sinking and storing carbon in both standing timber and wood products. To promote these positive effects, more precise planning is required that will ensure sustainable forest management and maximal deposition of harvested wood for long-term applications. Information on wood properties plays a key role; i.e. the wood properties can impact the carbon stocks in forests and the suitability of wood for structural timber. With respect to the theoretical background of wood formation, stem, crown, and branching constitute potential inputs (i.e. wood quality indicators) to allometric wood property, tree biomass, and wood quality models. Due to the complex nature of wood formation, measurements of wood quality indicators that could predict wood properties along the relevant directions of variation have previously been elusive in forest inventories. However, developments in laser scanning from aerial and terrestrial platforms support more complex mapping and modeling regimes based on dense three-dimensional point clouds. The aim here was to determine how wood properties could be estimated in remote-sensing-aided forest inventories. For this purpose, methods for characterizing select wood quality indicators in standing timber, using airborne and terrestrial laser scanning (ALS and TLS, respectively) were developed and evaluated in managed boreal Scots pine (Pinus sylvestris L.) forests. Firstly, the accuracies of wood quality indicators resolved from TLS point clouds were assessed. Secondly, the results were compared with x-ray tomographic references from sawmills. Thirdly, the accuracies of tree-specific crown features delineated from the ALS data in predictive modeling of the wood quality indicators were evaluated. The results showed that the quality and density of point clouds significantly impacted the accuracies of the extracted wood quality indicators. In the assessment of wood properties, TLS should be considered as a tool for retrieving as dense stem and branching data as possible from carefully selected sample trees. Accurately retrieved morphological data could be applied to allometric wood property models. The models should use tree traits predictable with aerial remote sensing (e.g. tree height, crown dimensions) to enable extrapolations. As an outlook, terrestrial and aerial remote sensing can play an important role in filling in the knowledge gaps regarding the behavior of wood properties over different spatial and temporal extents. Further interdisciplinary cooperation will be needed to fully facilitate the use of remote sensing and spatially transferable wood property models that could become useful in tackling the challenges associated with changing climate, silviculture, and demand for wood.Hoidetuilla metsillä on useita tärkeitä rooleja muuttuvassa ilmastossa ja ympäristössä. Puu sitoo ja varastoi hiiltä niin kasvaessaan, kuin pitkäikäisiksi puutuotteiksi jalostettuna. Näiden vaikutusten huomioiminen metsänhoidossa vaatii tarkkaa suunnittelua, jolla varmistetaan metsänhoidon ja puunkäytön kestävyys. Tieto puuaineen ominaisuuksista on keskeisessä osassa, sillä ne vaikuttavat hiilivarastojen suuruuteen metsissä, sekä puun käytettävyyteen pitkäikäisenä rakennesahatavarana. Puunmuodostuksen teoreettisen taustan mukaisesti, runko, latvus ja oksarakenne ovat potentiaalisia selittäviä muuttujia (eli puun laatuindikaattoreita), kun mallinnetaan puuaineen ominaisuuksia, puubiomassaa ja puun laatua. Puunmuodostuksen monimutkaisuudesta ja moniulotteisesta vaihtelusta johtuen, tarvittavien laatuidikaattorien mittaaminen osana metsävarojen inventointia ja riittävällä yksityiskohtaisuudella on ollut aiemmin mahdotonta. Monialustaisen laserkeilauksen kehittyminen kuitenkin tukee aiempaa monipuolisempien kartoitus- ja mallinnusjärjestelmien rakentamista, jotka perustuvat tiheisiin kolmiulotteisiin pistepilviin. Tämän työn tavoitteena oli määritellä, kuinka puuaineen ominaisuuksia voidaan arvioida kaukokartoitusta hyödyntävässä metsävarojen inventoinnissa. Tätä tarkoitusta varten kehitettiin menetelmiä puun laatuindikaattorien mittaamiseksi hoidetuissa männiköissä (Pinus sylvestris L.) lento- ja maastolaserkeilauksen avulla, ja arvioitiin niiden toimivuutta. Ensin arvioitiin laatuindikaattorien mittatarkkuus pistepilvissä. Toiseksi verrattiin pistepilvimittauksia röntgentomografiamittauksiin teollisilla sahoilla. Kolmanneksi arvioitiin lentolaserkeilauksella tuotettujen latvuspiirteiden tarkkuutta laatuindikaattorien ennustamisessa. Tuloksien perusteella pistepilvien laatu ja pistetiheys vaikuttivat merkittävästi mitattujen laatuindikaattorien tarkkuuteen. Puuaineen ominaisuuksien arvioimisessa, maastolaserkeilausta tulisi käyttää työkaluna mahdollisimman yksityiskohtaisten runko- ja oksikkuustietojen keräämiseen tarkkaan valikoiduista näytepuista. Tarkasti mitatut laatuindikaattorit voivat selittää puuaineen ominaisuuksia mallinnuksessa. Käytettyjen mallien tulisi perustua laatuindikaattoreille, jotka voidaan ennustaa lentolaserkeilausaineistosta (esim. puun pituus ja latvuksen mittasuhteet), jotta ennusteet ovat yleistettävissä laajoille alueille. Tulevaisuudessa, maasta ja ilmasta tehtävällä kaukokartoituksella voi olla tärkeä rooli puuaineen ominaisuuksien aikaan ja paikkaan sidotun vaihtelun tutkimuksessa. Lisää poikkitieteellistä työtä tarvitaan, jotta kaukokartoitusta ja puuaineen ominaisuuksia ennustavia spatiaalisia malleja voidaan täysimittaisesti hyödyntää kiihtyvän ilmastonmuutoksen, muuttuvan metsänhoidon ja lisääntyvän puunkäytön tuomien haasteiden kohtaamisessa

    The use of 3D laser scanning technology in buildings archaeology: the case of Måketorpsboden in Kulturen museum, Lund

    Get PDF
    This thesis is a project developed with Kulturen Museum in Lund for the documentation of a wooden building from the end of the 18th century. The technology applied is 3D laser scanning. The project wanted to answer several theoretical questions through the study and to conduct a practical case analysis, which lead to the production of a 3D textured model of part of the building. The work has been developed discussing in the beginning the state of the art of building archaeology, describing the different stages of study of buildings through history, from Renaissance to the seventeenth century and with an overlook of the approach of this discipline in the Nordic countries. Subsequently it has analysed the different kind of surveys for a proper archaeological building investigation: the direct survey and the indirect survey, explaining the differences and the technological innovation applied to this field especially during the last 20 years. A detailed paragraph about method of building investigation with the most recent laser scanning technologies illustrates the “pros and cons” of the utilization of 3D laser scanning for archaeological purposes; specific case studies are described. A final comment about the rising problem of handling and storing of data coming from the utilization of those new technologies has been taken in consideration. The last part of the paper is focused on the explanation of the background history of the typology of wooden building I have been studying and the detailed explanation of all the steps done for the actual project, from the acquisition campaign to the post processing of the data. An analysis of the data I got from the creation of the model of a single room has been performed with the examination of the possibility of future developments of the same project

    Optimization of over-summer snow storage at midlatitudes and low elevation

    Get PDF
    Climate change, including warmer winter temperatures, a shortened snowfall season, and more rain-on-snow events, threatens nordic skiing as a sport. In response, oversummer snow storage, attempted primarily using woodchips as a cover material, has been successfully employed as a climate change adaptation strategy by high-elevation and/or high-latitude ski centers in Europe and Canada. Such storage has never been attempted at a site that is both low elevation and midlatitude, and few studies have quantified storage losses repeatedly through the summer. Such data, along with tests of different cover strategies, are prerequisites to optimizing snow storage strategies. Here, we assess the rate at which the volume of two woodchip-covered snow piles (each ∼ 200 m3), emplaced during spring 2018 in Craftsbury, Vermont (45° N and 360 m a.s.l.), changed. We used these data to develop an optimized snow storage strategy. In 2019, we tested that strategy on a much larger, 9300 m3 pile. In 2018, we continually logged air-to-snow temperature gradients under different cover layers including rigid foam, open-cell foam, and woodchips both with and without an underlying insulating blanket and an overlying reflective cover. We also measured ground temperatures to a meter depth adjacent to the snow piles and used a snow tube to measure snow density. During both years, we monitored volume change over the melt season using terrestrial laser scanning every 10- 14 d from spring to fall. In 2018, snow volume loss ranged from 0.29 to 2.81 m3 d-1, with the highest rates in midsummer and lowest rates in the fall; mean rates of volumetric change were 1.24 and 1.50 m3 d-1, 0.55 % to 0.72 % of initial pile volume per day. Snow density did increase over time, but most volume loss was the result of melting. Wet woodchips underlain by an insulating blanket and covered with a reflective sheet were the most effective cover combination for minimizing melt, likely because the aluminized surface reflected incoming short-wave radiation while the wet woodchips provided significant thermal mass, allowing much of the energy absorbed during the day to be lost by long-wave emission at night. The importance of the pile surface-area-tovolume ratio is demonstrated by 4-fold lower rates of volumetric change for the 9300 m3 pile emplaced in 2019; it lost \u3c 0:16 % of its initial volume per day between April and October, retaining ∼ 60 % of the initial snow volume over summer. Together, these data demonstrate the feasibility of oversummer snow storage at midlatitudes and low elevations and suggest efficient cover strategies

    Depth Data Denoising in Optical Laser Based Sensors for Metal Sheet Flatness Measurement: A Deep Learning Approach

    Get PDF
    Surface flatness assessment is necessary for quality control of metal sheets manufactured from steel coils by roll leveling and cutting. Mechanical-contact-based flatness sensors are being replaced by modern laser-based optical sensors that deliver accurate and dense reconstruction of metal sheet surfaces for flatness index computation. However, the surface range images captured by these optical sensors are corrupted by very specific kinds of noise due to vibrations caused by mechanical processes like degreasing, cleaning, polishing, shearing, and transporting roll systems. Therefore, high-quality flatness optical measurement systems strongly depend on the quality of image denoising methods applied to extract the true surface height image. This paper presents a deep learning architecture for removing these specific kinds of noise from the range images obtained by a laser based range sensor installed in a rolling and shearing line, in order to allow accurate flatness measurements from the clean range images. The proposed convolutional blind residual denoising network (CBRDNet) is composed of a noise estimation module and a noise removal module implemented by specific adaptation of semantic convolutional neural networks. The CBRDNet is validated on both synthetic and real noisy range image data that exhibit the most critical kinds of noise that arise throughout the metal sheet production process. Real data were obtained from a single laser line triangulation flatness sensor installed in a roll leveling and cut to length line. Computational experiments over both synthetic and real datasets clearly demonstrate that CBRDNet achieves superior performance in comparison to traditional 1D and 2D filtering methods, and state-of-the-art CNN-based denoising techniques. The experimental validation results show a reduction in error than can be up to 15% relative to solutions based on traditional 1D and 2D filtering methods and between 10% and 3% relative to the other deep learning denoising architectures recently reported in the literature.This work was partially supported by by FEDER funds through MINECO project TIN2017-85827-P, and ELKARTEK funded projects ENSOL2 and CODISAVA2 (KK-202000077 and KK-202000044) supported by the Basque Governmen

    Reconstruction de formes tubulaires à partir de nuages de points : application à l’estimation de la géométrie forestière

    Get PDF
    Les capacités des technologies de télédétection ont augmenté exponentiellement au cours des dernières années : de nouveaux scanners fournissent maintenant une représentation géométrique de leur environnement sous la forme de nuage de points avec une précision jusqu'ici inégalée. Le traitement de nuages de points est donc devenu une discipline à part entière avec ses problématiques propres et de nombreux défis à relever. Le coeur de cette thèse porte sur la modélisation géométrique et introduit une méthode robuste d'extraction de formes tubulaires à partir de nuages de points. Nous avons choisi de tester nos méthodes dans le contexte applicatif difficile de la foresterie pour mettre en valeur la robustesse de nos algorithmes et leur application à des données volumineuses. Nos méthodes intègrent les normales aux points comme information supplémentaire pour atteindre les objectifs de performance nécessaire au traitement de nuages de points volumineux.Cependant, ces normales ne sont généralement pas fournies par les capteurs, il est donc nécessaire de les pré-calculer.Pour préserver la rapidité d'exécution, notre premier développement a donc consisté à présenter une méthode rapide d'estimation de normales. Pour ce faire nous avons approximé localement la géométrie du nuage de points en utilisant des "patchs" lisses dont la taille s'adapte à la complexité locale des nuages de points. Nos travaux se sont ensuite concentrés sur l’extraction robuste de formes tubulaires dans des nuages de points denses, occlus, bruités et de densité inhomogène. Dans cette optique, nous avons développé une variante de la transformée de Hough dont la complexité est réduite grâce aux normales calculées. Nous avons ensuite couplé ces travaux à une proposition de contours actifs indépendants de leur paramétrisation. Cette combinaison assure la cohérence interne des formes reconstruites et s’affranchit ainsi des problèmes liés à l'occlusion, au bruit et aux variations de densité. Notre méthode a été validée en environnement complexe forestier pour reconstruire des troncs d'arbre afin d'en relever les qualités par comparaison à des méthodes existantes. La reconstruction de troncs d'arbre ouvre d'autres questions à mi-chemin entre foresterie et géométrie. La segmentation des arbres d'une placette forestière est l'une d’entre elles. C'est pourquoi nous proposons également une méthode de segmentation conçue pour contourner les défauts des nuages de points forestiers et isoler les différents objets d'un jeu de données. Durant nos travaux nous avons utilisé des approches de modélisation pour répondre à des questions géométriques, et nous les avons appliqué à des problématiques forestières.Il en résulte un pipeline de traitements cohérent qui, bien qu'illustré sur des données forestières, est applicable dans des contextes variés.Abstract : The potential of remote sensing technologies has recently increased exponentially: new sensors now provide a geometric representation of their environment in the form of point clouds with unrivalled accuracy. Point cloud processing hence became a full discipline, including specific problems and many challenges to face. The core of this thesis concerns geometric modelling and introduces a fast and robust method for the extraction of tubular shapes from point clouds. We hence chose to test our method in the difficult applicative context of forestry in order to highlight the robustness of our algorithms and their application to large data sets. Our methods integrate normal vectors as a supplementary geometric information in order to achieve the performance goal necessary for large point cloud processing. However, remote sensing techniques do not commonly provide normal vectors, thus they have to be computed. Our first development hence consisted in the development of a fast normal estimation method on point cloud in order to reduce the computing time on large point clouds. To do so, we locally approximated the point cloud geometry using smooth ''patches`` of points which size adapts to the local complexity of the point cloud geometry. We then focused our work on the robust extraction of tubular shapes from dense, occluded, noisy point clouds suffering from non-homogeneous sampling density. For this objective, we developed a variant of the Hough transform which complexity is reduced thanks to the computed normal vectors. We then combined this research with a new definition of parametrisation-invariant active contours. This combination ensures the internal coherence of the reconstructed shapes and alleviates issues related to occlusion, noise and variation of sampling density. We validated our method in complex forest environments with the reconstruction of tree stems to emphasize its advantages and compare it to existing methods. Tree stem reconstruction also opens new perspectives halfway in between forestry and geometry. One of them is the segmentation of trees from a forest plot. Therefore we also propose a segmentation approach designed to overcome the defects of forest point clouds and capable of isolating objects inside a point cloud. During our work we used modelling approaches to answer geometric questions and we applied our methods to forestry problems. Therefore, our studies result in a processing pipeline adapted to forest point cloud analyses, but the general geometric algorithms we propose can also be applied in various contexts
    corecore