20 research outputs found

    Estimating Writing Neatness from Online Handwritten Data

    Get PDF
    Handwriting is the most fundamental expressive activity in learning. To utilize the intuitiveness and the nature of handwriting, digital pen technology has emerged to capture and transfer notes. We developed AirTransNote, a student note-sharing system that facilitates collaborative and interactive learning in conventional classrooms. A teacher can use the AirTransNote system to share student notes with the class on a projected screen immediately to enhance the group learning experience. However, to improve the effectiveness of sharing notes, the teacher must be able to select an effective note for sharing. This can be difficult and time consuming during a lecture. Moreover, students should be encouraged to improve the presentation of their handwritten notes. Well-written notes are more accessible for other students and reduce irrelevant and careless mistakes. To facilitate learning improvements based on note sharing, we require a method to estimate the neatness of a note automatically. If a method is established, the teacher can easily select effective notes. Furthermore, this method can help provide feedback to the student to improve their writing. We examined 14 basic features from handwritten notes by considering correlation coefficients and found that the variance of pen speed, angular point average, and pen speed average were the significant features for evaluating the neatness of handwritten notes

    Shape-Based Plagiarism Detection for Flowchart Figures in Texts

    Full text link
    Plagiarism detection is well known phenomenon in the academic arena. Copying other people is considered as serious offence that needs to be checked. There are many plagiarism detection systems such as turn-it-in that has been developed to provide this checks. Most, if not all, discard the figures and charts before checking for plagiarism. Discarding the figures and charts results in look holes that people can take advantage. That means people can plagiarized figures and charts easily without the current plagiarism systems detecting it. There are very few papers which talks about flowcharts plagiarism detection. Therefore, there is a need to develop a system that will detect plagiarism in figures and charts. This paper presents a method for detecting flow chart figure plagiarism based on shape-based image processing and multimedia retrieval. The method managed to retrieve flowcharts with ranked similarity according to different matching sets.Comment: 12 page

    Flow2Code - From Hand-Drawn Flowchart to Code Execution

    Get PDF
    Flowcharts play an important role when learning to program by conveying algorithms graphically and making them easy to read and understand. When learning how to code with flowcharts and transitioning between the two, people often use computer based software to design and execute the algorithm conveyed by the flowchart. This requires the users to learn how to use the computer-based software first, which often leads to a steep learning curve. We claim that the learning curve can be decremented by using off-line sketch recognition and computer vision algorithms on a mobile device. This can be done by drawing the flowchart on a piece of paper and using a mobile device with a camera to capture an image of the flowchart. Flow2Code is a code flowchart recognizer that allows the users to code simple scripts on a piece of paper by drawing flowcharts. This approach attempts to be more intuitive since the user does not need to learn how to use a system to design the flowchart. Only a pencil, a notebook with white pages, and a mobile device are needed to achieve the same result. The main contribution of this thesis is to provide a more intuitive and easy-to-use tool for people to translate flowcharts into code and then execute the code

    Pen-based Methods For Recognition and Animation of Handwritten Physics Solutions

    Get PDF
    There has been considerable interest in constructing pen-based intelligent tutoring systems due to the natural interaction metaphor and low cognitive load afforded by pen-based interaction. We believe that pen-based intelligent tutoring systems can be further enhanced by integrating animation techniques. In this work, we explore methods for recognizing and animating sketched physics diagrams. Our methodologies enable an Intelligent Tutoring System (ITS) to understand the scenario and requirements posed by a given problem statement and to couple this knowledge with a computational model of the student\u27s handwritten solution. These pieces of information are used to construct meaningful animations and feedback mechanisms that can highlight errors in student solutions. We have constructed a prototype ITS that can recognize mathematics and diagrams in a handwritten solution and infer implicit relationships among diagram elements, mathematics and annotations such as arrows and dotted lines. We use natural language processing to identify the domain of a given problem, and use this information to select one or more of four domain-specific physics simulators to animate the user\u27s sketched diagram. We enable students to use their answers to guide animation behavior and also describe a novel algorithm for checking recognized student solutions. We provide examples of scenarios that can be modeled using our prototype system and discuss the strengths and weaknesses of our current prototype. Additionally, we present the findings of a user study that aimed to identify animation requirements for physics tutoring systems. We describe a taxonomy for categorizing different types of animations for physics problems and highlight how the taxonomy can be used to define requirements for 50 physics problems chosen from a university textbook. We also present a discussion of 56 handwritten solutions acquired from physics students and describe how suitable animations could be constructed for each of them

    Sketch recognition of digital ink diagrams : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Computer Science at Massey University, Palmerston North, New Zealand

    Get PDF
    Figures are either re-used with permission, or abstracted with permission from the source article.Sketch recognition of digital ink diagrams is the process of automatically identifying hand-drawn elements in a diagram. This research focuses on the simultaneous grouping and recognition of shapes in digital ink diagrams. In order to recognise a shape, we need to group strokes belonging to a shape, however, strokes cannot be grouped until the shape is identified. Therefore, we treat grouping and recognition as a simultaneous task. Our grouping technique uses spatial proximity to hypothesise shape candidates. Many of the hypothesised shape candidates are invalid, therefore we need a way to reject them. We present a novel rejection technique based on novelty detection. The rejection method uses proximity measures to validate a shape candidate. In addition, we investigate on improving the accuracy of the current shape recogniser by adding extra features. We also present a novel connector recognition system that localises connector heads around recognised shapes. We perform a full comparative study on two datasets. The results show that our approach is significantly more accurate in finding shapes and faster on process diagram compared to Stahovich et al. (2014), which the results show the superiority of our approach in terms of computation time and accuracy. Furthermore, we evaluate our system on two public datasets and compare our results with other approaches reported in the literature that have used these dataset. The results show that our approach is more accurate in finding and recognising the shapes in the FC dataset (by finding and recognising 91.7% of the shapes) compared to the reported results in the literature

    Rethinking Pen Input Interaction: Enabling Freehand Sketching Through Improved Primitive Recognition

    Get PDF
    Online sketch recognition uses machine learning and artificial intelligence techniques to interpret markings made by users via an electronic stylus or pen. The goal of sketch recognition is to understand the intention and meaning of a particular user's drawing. Diagramming applications have been the primary beneficiaries of sketch recognition technology, as it is commonplace for the users of these tools to rst create a rough sketch of a diagram on paper before translating it into a machine understandable model, using computer-aided design tools, which can then be used to perform simulations or other meaningful tasks. Traditional methods for performing sketch recognition can be broken down into three distinct categories: appearance-based, gesture-based, and geometric-based. Although each approach has its advantages and disadvantages, geometric-based methods have proven to be the most generalizable for multi-domain recognition. Tools, such as the LADDER symbol description language, have shown to be capable of recognizing sketches from over 30 different domains using generalizable, geometric techniques. The LADDER system is limited, however, in the fact that it uses a low-level recognizer that supports only a few primitive shapes, the building blocks for describing higher-level symbols. Systems which support a larger number of primitive shapes have been shown to have questionable accuracies as the number of primitives increase, or they place constraints on how users must input shapes (e.g. circles can only be drawn in a clockwise motion; rectangles must be drawn starting at the top-left corner). This dissertation allows for a significant growth in the possibility of free-sketch recognition systems, those which place little to no drawing constraints on users. In this dissertation, we describe multiple techniques to recognize upwards of 18 primitive shapes while maintaining high accuracy. We also provide methods for producing confidence values and generating multiple interpretations, and explore the difficulties of recognizing multi-stroke primitives. In addition, we show the need for a standardized data repository for sketch recognition algorithm testing and propose SOUSA (sketch-based online user study application), our online system for performing and sharing user study sketch data. Finally, we will show how the principles we have learned through our work extend to other domains, including activity recognition using trained hand posture cues

    Combining appearance and context for multi-domain sketch recognition

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2012.Cataloged from PDF version of thesis.Includes bibliographical references (p. 99-102).As our interaction with computing shifts away from the traditional desktop model (e.g., towards smartphones, tablets, touch-enabled displays), the technology that drives this interaction needs to evolve as well. Wouldn't it be great if we could talk, write, and draw to a computer just like we do with each other? This thesis addresses the drawing aspect of that vision: enabling computers to understand the meaning and semantics of free-hand diagrams. We present a novel framework for sketch recognition that seamlessly combines a rich representation of local visual appearance with a probabilistic graphical model for capturing higher level relationships. This joint model makes our system less sensitive to noise and drawing variations, improving accuracy and robustness. The result is a recognizer that is better able to handle the wide range of drawing styles found in messy freehand sketches. To preserve the fluid process of sketching on paper, our interface allows users to draw diagrams just as they would on paper, using the same notations and conventions. For the isolated symbol recognition task our method exceeds state-of-the-art performance in three domains: handwritten digits, PowerPoint shapes, and electrical circuit symbols. For the complete diagram recognition task it was able to achieve excellent performance on both chemistry and circuit diagrams, improving on the best previous results. Furthermore, in an on-line study our new interface was on average over twice as fast as the existing CAD-based method for authoring chemical diagrams, even for novice users who had little or no experience using a tablet. This is one of the first direct comparisons that shows a sketch recognition interface significantly outperforming a professional industry-standard CAD-based tool.by Tom Yu Ouyang.Ph.D
    corecore