7,531 research outputs found

    Privacy and Truthful Equilibrium Selection for Aggregative Games

    Full text link
    We study a very general class of games --- multi-dimensional aggregative games --- which in particular generalize both anonymous games and weighted congestion games. For any such game that is also large, we solve the equilibrium selection problem in a strong sense. In particular, we give an efficient weak mediator: a mechanism which has only the power to listen to reported types and provide non-binding suggested actions, such that (a) it is an asymptotic Nash equilibrium for every player to truthfully report their type to the mediator, and then follow its suggested action; and (b) that when players do so, they end up coordinating on a particular asymptotic pure strategy Nash equilibrium of the induced complete information game. In fact, truthful reporting is an ex-post Nash equilibrium of the mediated game, so our solution applies even in settings of incomplete information, and even when player types are arbitrary or worst-case (i.e. not drawn from a common prior). We achieve this by giving an efficient differentially private algorithm for computing a Nash equilibrium in such games. The rates of convergence to equilibrium in all of our results are inverse polynomial in the number of players nn. We also apply our main results to a multi-dimensional market game. Our results can be viewed as giving, for a rich class of games, a more robust version of the Revelation Principle, in that we work with weaker informational assumptions (no common prior), yet provide a stronger solution concept (ex-post Nash versus Bayes Nash equilibrium). In comparison to previous work, our main conceptual contribution is showing that weak mediators are a game theoretic object that exist in a wide variety of games -- previously, they were only known to exist in traffic routing games

    Equilibria, Fixed Points, and Complexity Classes

    Get PDF
    Many models from a variety of areas involve the computation of an equilibrium or fixed point of some kind. Examples include Nash equilibria in games; market equilibria; computing optimal strategies and the values of competitive games (stochastic and other games); stable configurations of neural networks; analysing basic stochastic models for evolution like branching processes and for language like stochastic context-free grammars; and models that incorporate the basic primitives of probability and recursion like recursive Markov chains. It is not known whether these problems can be solved in polynomial time. There are certain common computational principles underlying different types of equilibria, which are captured by the complexity classes PLS, PPAD, and FIXP. Representative complete problems for these classes are respectively, pure Nash equilibria in games where they are guaranteed to exist, (mixed) Nash equilibria in 2-player normal form games, and (mixed) Nash equilibria in normal form games with 3 (or more) players. This paper reviews the underlying computational principles and the corresponding classes

    Ascending-Price Algorithms for Unknown Markets

    Full text link
    We design a simple ascending-price algorithm to compute a (1+ε)(1+\varepsilon)-approximate equilibrium in Arrow-Debreu exchange markets with weak gross substitute (WGS) property, which runs in time polynomial in market parameters and log1/ε\log 1/\varepsilon. This is the first polynomial-time algorithm for most of the known tractable classes of Arrow-Debreu markets, which is easy to implement and avoids heavy machinery such as the ellipsoid method. In addition, our algorithm can be applied in unknown market setting without exact knowledge about the number of agents, their individual utilities and endowments. Instead, our algorithm only relies on queries to a global demand oracle by posting prices and receiving aggregate demand for goods as feedback. When demands are real-valued functions of prices, the oracles can only return values of bounded precision based on real utility functions. Due to this more realistic assumption, precision and representation of prices and demands become a major technical challenge, and we develop new tools and insights that may be of independent interest. Furthermore, our approach also gives the first polynomial-time algorithm to compute an exact equilibrium for markets with spending constraint utilities, a piecewise linear concave generalization of linear utilities. This resolves an open problem posed by Duan and Mehlhorn (2015).Comment: 33 page
    corecore