23 research outputs found

    On-Chip Solar Energy Harvester and PMU With Cold Start-Up and Regulated Output Voltage for Biomedical Applications

    Get PDF
    This paper presents experimental results from a system that comprises a fully autonomous energy harvester with a solar cell of 1 mm 2 as energy transducer and a Power Management Unit (PMU) on the same silicon substrate, and an output voltage regulator. Both chips are implemented in standard 0.18 μm CMOS technology with total layout areas of 1.575 mm 2 and 0.0126 mm 2 , respectively. The system also contains an off-the-shelf 3.2 mm × 2.5 mm × 0.9 mm supercapacitor working as an off-chip battery or energy reservoir between the PMU and the voltage regulator. Experimental results show that the fast energy recovery of the on-chip solar cell and PMU permits the system to replenish the supercapacitor with enough charge as to sustain Bluetooth Low Energy (BLE) communications even with input light powers of 510 nW. The whole system is able to self-start-up without external mechanisms at 340 nW. This work is the first step towards a self-supplied sensor node with processing and communication capabilities. The small form factor and ultra-low power consumption of the system components is in compliance with biomedical applications requirementsThis work was supported in part by the Spanish Government (Ministerio de Ciencia, Innovación y Universidades) under Project RTI2018-097088-B-C32 and Project RTI2018-095994-B-I00 (MICINN/FEDER), in part by the Xunta de Galicia, in part by the Consellería de Cultura, Educación e Ordenación Universitaria (accreditation 2016-2019, ED431G/08 and reference competitive group 2017-2020, ED431C 2017/69) and European Regional Development Fund (ERDF), and in part by the Junta de Extremadura and the ERDF, under Grant IB 18079S

    An Input Power-Aware Maximum Efficiency Tracking Technique for Energy Harvesting in IoT Applications

    Get PDF
    The Internet of Things (IoT) enables intelligent monitoring and management in many applications such as industrial and biomedical systems as well as environmental and infrastructure monitoring. As a result, IoT requires billions of wireless sensor network (WSN) nodes equipped with a microcontroller and transceiver. As many of these WSN nodes are off-grid and small-sized, their limited-capacity batteries need periodic replacement. To mitigate the high costs and challenges of these battery replacements, energy harvesting from ambient sources is vital to achieve energy-autonomous operation. Energy harvesting for WSNs is challenging because the available energy varies significantly with ambient conditions and in many applications, energy must be harvested from ultra-low power levels. To tackle these stringent power constraints, this dissertation proposes a discontinuous charging technique for switched-capacitor converters that improves the power conversion efficiency (PCE) at low input power levels and extends the input power harvesting range at which high PCE is achievable. Discontinuous charging delivers current to energy storage only during clock non-overlap time. This enables tuning of the output current to minimize converter losses based on the available input power. Based on this fundamental result, an input power-aware, two-dimensional efficiency tracking technique for WSNs is presented. In addition to conventional switching frequency control, clock nonoverlap time control is introduced to adaptively optimize the power conversion efficiency according to the sensed ambient power levels. The proposed technique is designed and simulated in 90nm CMOS with post-layout extraction. Under the same input and output conditions, the proposed system maintains at least 45% PCE at 4μW input power, as opposed to a conventional continuous system which requires at least 18.7μW to maintain the same PCE. In this technique, the input power harvesting range is extended by 1.5x. The technique is applied to a WSN implementation utilizing the IEEE 802.15.4- compatible GreenNet communications protocol for industrial and wearable applications. This allows the node to meet specifications and achieve energy autonomy when deployed in harsher environments where the input power is 49% lower than what is required for conventional operation

    Circuits and Systems for Energy Harvesting and Internet of Things Applications

    Get PDF
    The Internet of Things (IoT) continues its growing trend, while new “smart” objects are con-stantly being developed and commercialized in the market. Under this paradigm, every common object will be soon connected to the Internet: mobile and wearable devices, electric appliances, home electronics and even cars will have Internet connectivity. Not only that, but a variety of wireless sensors are being proposed for different consumer and industrial applications. With the possibility of having hundreds of billions of IoT objects deployed all around us in the coming years, the social implications and the economic impact of IoT technology needs to be seriously considered. There are still many challenges, however, awaiting a solution in order to realize this future vision of a connected world. A very important bottleneck is the limited lifetime of battery powered wireless devices. Fully depleted batteries need to be replaced, which in perspective would generate costly maintenance requirements and environmental pollution. However, a very plausible solution to this dilemma can be found in harvesting energy from the ambient. This dissertation focuses in the design of circuits and system for energy harvesting and Internet of Things applications. The first part of this dissertation introduces the research motivation and fundamentals of energy harvesting and power management units (PMUs). The architecture of IoT sensor nodes and PMUs is examined to observe the limitations of modern energy harvesting systems. Moreover, several architectures for multisource harvesting are reviewed, providing a background for the research presented here. Then, a new fully integrated system architecture for multisource energy harvesting is presented. The design methodology, implementation, trade-offs and measurement results of the proposed system are described. The second part of this dissertation focus on the design and implementation of low-power wireless sensor nodes for precision agriculture. First, a sensor node incorporating solar energy harvesting and a dynamic power management strategy is presented. The operation of a wireless sensor network for soil parameter estimation, consisting of four nodes is demonstrated. After that, a solar thermoelectric generator (STEG) prototype for powering a wireless sensor node is proposed. The implemented solar thermoelectric generator demonstrates to be an alternative way to harvest ambient energy, opening the possibility for its use in agricultural and environmental applications. The open problems in energy harvesting for IoT devices are discussed at the end, to delineate the possible future work to improve the performance of EH systems. For all the presented works, proof-of-concept prototypes were fabricated and tested. The measured results are used to verify their correct operation and performance

    Low Power Circuit Design in Sustainable Self Powered Systems for IoT Applications

    Get PDF
    The Internet-of-Things (IoT) network is being vigorously pushed forward from many fronts in diverse research communities. Many problems are still there to be solved, and challenges are found among its many levels of abstraction. In this thesis we give an overview of recent developments in circuit design for ultra-low power transceivers and energy harvesting management units for the IoT. The first part of the dissertation conducts a study of energy harvesting interfaces and optimizing power extraction, followed by power management for energy storage and supply regulation. we give an overview of the recent developments in circuit design for ultra-low power management units, focusing mainly in the architectures and techniques required for energy harvesting from multiple heterogeneous sources. Three projects are presented in this area to reach a solution that provides reliable continuous operation for IoT sensor nodes in the presence of one or more natural energy sources to harvest from. The second part focuses on wireless transmission, To reduce the power consumption and boost the Tx energy efficiency, a novel delay cell exploiting current reuse is used in a ring-oscillator employed as the local oscillator generator scheme. In combination with an edge-combiner power amplifier, the Tx showed a measured energy efficiency of 0.2 nJ=bit and a normalized energy efficiency of 3.1 nJ=bit:mW when operating at output power levels up to -10 dBm and data rates of 3 Mbps

    Contributions to the design of energy harvesting systems for autonomous sensors in low power marine applications

    Get PDF
    Tesi en modalitat de compendi de publicacionsOceanographic sensor platforms provide biological and meteorological data to help understand changes in marine environment and help to preserve it. Lagrangian drifters are autonomous passive floating platforms used in climate research to obtain surface marine data. They are low-cost, versatile, easy-to-deploy and can cover large extensions of the ocean when deployed in group. These deployments can last for years, so one of the main design challenges is the autonomy of the drifter. Several energy harvesting (EH) sources are being explored to reduce costs in battery replacement maintenance efforts such as solar panels. Drifters must avoid the impact of the wind because this may compromise proper surface current tracking and therefore, should ideally be mostly submerged. This interferes with the feasibility of solar harvesting, so other EH sources are being explored such as the oscillatory movement of the drifter caused by ocean waves. Wave energy converters (WEC) are the devices that turn this movement into energy. The motion of the drifter can principally be described by 3 oscillatory degrees of freedom (DoF); surge, heave and pitch. The heave motion includes the buoyancy’s response of the drifter, which can be explained by a mass-spring-damping model. By including the wave’s hydrodynamic load in this model, it is converted into a nonlinear system whose frequency response includes the wave’s frequency and the natural frequencies from the linear system. A smart option to maximize the captured energy is to design the inner WEC with a natural frequency similar to that of the drifter's movement. In this thesis, a 4 DoF model is obtained. This model includes the heave, the surge and the pitch motion of the drifter in addition to the inner pendulum motion relative to the buoy. Simultaneously, different pendulum-type WECs for small-size oceanic drifters are proposed. One of these converters consists of an articulated double-pendulum arm with a proof mass that generates energy through its relative motion with the buoy. Different experimental tests are carried out, with a prototype below 10 cm in diameter and 300 g of total mass, proving the capability of harvesting hundreds of microwatts in standard sea conditions EH sources require an additional power management unit (PMU) to convert their variable output into a constant and clean source to be able to feed the sensor electronics. PMUs should also ensure that the maximum available energy is harvested with a maximum power point tracking (MPPT) algorithm. Some sources, such as WECs, require fast MPPT as its output can show relatively rapid variations. However, increasing the sampling rate may reduce the harvested energy. In this thesis, this trade-off is analyzed using the resistor-based fractional open circuit voltage-MPPT technique, which is appropriate for low-power EH sources. Several experiments carried out in marine environments demonstrate the need for increasing the sampling rate. For this purpose, the use of a commercial PMU IC with additional low-power circuitry is proposed. Three novel circuits with a sampling period of 60 ms are manufactured and experimentally evaluated with a small-scale and low-power WEC. Results show that these configurations improve the harvested energy by 26% in comparison to slow sampling rate configurations. Finally, an EH-powered oceanographic monitoring system with a custom wave measuring algorithm is designed. By using the energy collected by a small-size WEC, this system is capable of transmitting up to 22 messages per day containing data on its location and measured wave parameters.Les plataformes d’observació oceanogràfiques integren sensors que proporcionen dades físiques i biogeoquímiques de l’oceà que ajuden a entendre canvis en l’entorn marí. Un exemple d’aquestes plataformes són les boies de deriva (drifters), que són dispositius autònoms i passius utilitzats en l’àmbit de la recerca climàtica per obtenir dades in-situ de la superfície marina. Aquests instruments són de baix cost, versàtils, fàcils de desplegar i poden cobrir grans superfícies quan s’utilitzen en grup. L’autonomia és un dels principals desafiaments en el disseny de drifters. Per tal d’evitar els costos en la substitució de bateries, s’estudien diferents fonts de captació d’energia com per exemple la solar. Els drifters utilitzats per l’estudi dels corrents marins superficials han d’evitar l’impacte directe del vent ja que afecta al correcte seguiment de les corrents i, per tant, cal que estiguin majoritàriament submergides. Això compromet la viabilitat de l’energia solar, fet que requereix l’estudi d’altres fonts de captació com el propi moviment de la boia causat per les onades. Els convertidors d’energia de les onades (WEC, wave energy converters) compleixen aquesta funció. El moviment dels drifters pot explicar-se bàsicament a través de 3 graus de llibertat oscil·latoris: la translació vertical i la horitzontal i el balanceig. La translació vertical inclou la flotabilitat del dispositiu, que es pot descriure mitjançant el model massamolla- amortidor. Incloure la càrrega hidrodinàmica de l’onada en aquest model el converteix en un sistema no lineal amb una resposta freqüencial que inclou la de l’onada i les naturals del sistema lineal. Una opció per maximitzar l’energia captada és dissenyar el WEC amb una freqüència natural similar a la del moviment de la boia. En aquesta tesis es proposa un model de 4 graus de llibertat per a l’estudi del moviment del drifter. Aquest inclou els 3 graus de llibertat de la boia i el moviment del pèndul relatiu a ella. En paral·lel, es proposen diferents WEC del tipus pendular per drifters de reduïdes dimensions. Un d’aquests WEC consisteix en un doble braç articulat amb massa flotant que genera energia a través del seu moviment relatiu al drifter. S’han dut a terme diferents proves experimentals amb un prototip inferior a 10 cm de diàmetre i 300 g de massa, les quals demostren la seva capacitat de captar centenars de microwatts en condicions marines estàndard. Utilitzar fonts de captació d’energia requereix incloure una unitat gestora de potència (PMU, power management unit) per tal de convertir la seva sortida variable en una font constant i neta que alimenti l’electrònica dels sensors. Les PMU també tenen la funció d’assegurar que es recull la màxima energia mitjançant un algoritme de seguiment del punt de màxima potència. Els WEC requereixen un seguiment d’aquest punt ràpid perquè la seva sortida consta de variacions relativament ràpides. Tanmateix, augmentar la freqüència de mostreig pot reduir l’energia captada. En aquesta tesi, s'analitza a fons aquesta relació utilitzant la tècnica de seguiment de la tensió en circuit obert fraccionada basada en resistències, que és molt adequada per a fonts de baixa potència. Diversos experiments realitzats en el medi marí mostren la necessitat d'augmentar la freqüència de mostreig, així que es proposa l'ús de PMU comercials amb una electrònica addicional de baix consum. S’han fabricat tres circuits diferents amb un període de mostreig de 60 ms i s’han avaluat experimentalment en un WEC de reduïdes dimensions. Els resultats mostren que aquestes configuracions milloren l'energia recollida en un 26% en comparació a PMU amb mostreig més lent. Finalment, s’ha dissenyat un sistema autònom de monitorització marina que inclou un algoritme de mesura d'ones propi. Aquest sistema és capaç de transmetre fins a 22 missatges al diaPostprint (published version

    Energy Harvesting and Power Management Integrated Circuits for Self-Sustaining Wearables

    Get PDF
    Harvesting energy from ambient sources can provide power autonomy to energy efficient electronics and sensors. The last decade has seen a multitude of ways to scavenge energy from various sources like solar, thermal, electromagnetic, electrostatic, piezo-electric and many more. Thermal energy from human body heat is ubiquitous and can be harnessed seamlessly across day and night. Micropower generation from human body heat using thermoelectric generators (TEG) can replace battery to power miniaturized, unobtrusive, energy-efficient wearable devices for preventive health care and vital body signs monitoring and make them self-sustainable. This thesis is focused in realizing such a system and presents different integrated power management circuit techniques to solve the primary challenges associated with energy harvesting from human body heat. The first part of the thesis demonstrates an on-chip electrical cold-start technique to achieve low-voltage and fast start-up of a boost converter for autonomous thermal energy harvesting from human body heat. Improved charge transfer through high gate-boosted switches by means of cross-coupled complementary charge pumps enables voltage multiplication of the low input voltage during cold start. The start-up voltage multiplier operates with an on-chip clock generated by an ultra-low-voltage ring oscillator. The proposed cold-start scheme implemented in a general-purpose 0.18 µm CMOS process assists an inductive boost converter to start operation with a minimum input voltage of 57 mV in 135 ms, while consuming only 90 nJ of energy from the harvesting source, without using additional sources of energy or additional off-chip components. A single-inductor, self-starting and efficient low-voltage boost converter is described next, suitable for TEG-based body-heat energy harvesting. In order to extract maximum energy from a thermoelectric generator (TEG) at small temperature gradient, a loss-optimized maximum power transfer (LO-MPT) scheme is proposed that enables the harvester to achieve high end-to-end efficiency at small input voltages. The boost converter is implemented in a 0.18 µm CMOS technology and achieves above 75% efficiency for a matched input voltage range of 15 mV-100 mV, with a peak efficiency of 82%. Enhanced power extraction enables the converter to sustain operation at an input voltage as low as 3.5 mV. In addition, the boost converter self-starts in 252 ms with a minimum input voltage of 50 mV utilizing a dual-path architecture and a one-shot cold-start mechanism. The final section demonstrates a self-sustainable system where a low-power signal conditioning front-end with a unique dynamic threshold tracking loop is designed to decode heart beats from a noisy ECG signal and is powered by human body heat utilizing an autonomous DC-DC converter embedded in the same chip and an off-chip centimeter-scale TEG

    Design of Low-Cost Energy Harvesting and Delivery Systems for Self-Powered Devices: Application to Authentication IC

    Get PDF
    This thesis investigates the development of low-cost energy harvesting and delivery systems for low-power low-duty-cycle devices. Initially, we begin by designing a power management scheme for on-demand power delivery. The baseline implementation is also used to identify critical challenges for low-power energy harvesting. We further propose a robust self-powered energy harvesting and delivery system (EHDS) design as a solution to achieve energy autonomy in standalone systems. The design demonstrates a complete ecosystem for low-overhead pulse-frequency modulated (PFM) harvesting while reducing harvesting window confinement and overall implementation footprint. Two transient-based models are developed for improved accuracy during design space exploration and optimization for both PFM power conversion and energy harvesting. Finally, a low-power authentication IC is demonstrated and projected designs for self-powered System-on-Chips (SoCs) are presented. The proposed designs are proto-typed in two test-chips in a 65nm CMOS process and measurement data showcase improved performance in terms of battery power, cold-start duration, passives (inductance and capacitance) needed, and end-to-end harvesting/conversion efficiency.Ph.D

    Power management systems based on switched-capacitor DC-DC converter for low-power wearable applications

    Get PDF
    The highly efficient ultra-low-power management unit is essential in powering low-power wearable electronics. Such devices are powered by a single input source, either by a battery or with the help of a renewable energy source. Thus, there is a demand for an energy conversion unit, in this case, a DC-DC converter, which can perform either step-up or step-down conversions to provide the required voltage at the load. Energy scavenging with a boost converter is an intriguing choice since it removes the necessity of bulky batteries and considerably extends the battery life. Wearable devices are typically powered by a monolithic battery. The commonly available battery such as Alkaline or Lithium-ion, degrade over time due to their life spans as it is limited by the number of charge cycles- which depend highly on the environmental and loading condition. Thus, once it reaches the maximum number of life cycles, the battery needs to be replaced. The operation of the wearable devices is limited by usable duration, which depends on the energy density of the battery. Once the stored energy is depleted, the operation of wearable devices is also affected, and hence it needs to be recharged. The energy harvesters- which gather the available energy from the surroundings, however, have no limitation on operating life. The application can become battery-less given that harvestable energy is sufficiently powering the low-power devices. Although the energy harvester may not completely replace the battery source, it ensures the maximum duration of use and assists to become autonomous and self-sustain devices. The photovoltaic (PV) cell is a promising candidate as a hypothetical input supply source among the energy harvesters due to its smaller area and high power density over other harvesters. Solar energy use PV harvester can convert ambient light energy into electrical energy and keep it in the storage device. The harvested output of PV cannot directly connect to wearable loads for two main reasons. Depending on the incoming light, the harvested current result in varying open-circuit voltage. It requires the power management circuit to deal with unregulated input variation. Second, depending on the PV cell's material type and an effective area, the I-V characteristic's performance varies, resulting in a variation of the output power. There are several works of maximum power point tracking (MPPT) methods that allow the solar energy harvester to achieve optimal harvested power. Therefore, the harvested power depends on the size and usually small area cell is sufficient for micro-watt loads low-powered applications. The available harvested voltage, however, is generally very low-voltage range between 0.4-0.6 V. The voltage ratings of electronics in standard wearable applications operate in 1.8-3 V voltages as described in introduction’s application example section. It is higher than the supply source can offer. The overcome the mismatch voltage between source and supply circuit, a DC-DC boost converter is necessary. The switch-mode converters are favoured over the linear converters due to their highly efficient and small area overhead. The inductive converter in the switch-mode converter is common due to its high-efficiency performance. However, the integration of the inductor in the miniaturised integrated on-chip design tends to be bulky. Therefore, the switched-capacitor approach DC-DC converters will be explored in this research. In the switched-capacitor converter universe, there is plenty of work for single-output designs for various topologies. Most converters are reconfigurable to the different DC voltage levels apart from Dickson and cross-coupled charge pump topologies due to their boosting power stage architecture through a number of stages. However, existing multi-output converters are limited to the fixed gain ratio. This work explores the reconfigurable dual-output converter with adjustable gain to compromise the research gap. The thesis's primary focus is to present the inductor-less, switched-capacitor-based DC-DC converter power management system (PMS) supplied by a varying input of PV energy harvester input source. The PMS should deliver highly efficient regulated voltage conversion ratio (VCR) outputs to low-power wearable electronic devices that constitute multi-function building blocks

    Power Management ICs for Internet of Things, Energy Harvesting and Biomedical Devices

    Get PDF
    This dissertation focuses on the power management unit (PMU) and integrated circuits (ICs) for the internet of things (IoT), energy harvesting and biomedical devices. Three monolithic power harvesting methods are studied for different challenges of smart nodes of IoT networks. Firstly, we propose that an impedance tuning approach is implemented with a capacitor value modulation to eliminate the quiescent power consumption. Secondly, we develop a hill-climbing MPPT mechanism that reuses and processes the information of the hysteresis controller in the time-domain and is free of power hungry analog circuits. Furthermore, the typical power-performance tradeoff of the hysteresis controller is solved by a self-triggered one-shot mechanism. Thus, the output regulation achieves high-performance and yet low-power operations as low as 12 µW. Thirdly, we introduce a reconfigurable charge pump to provide the hybrid conversion ratios (CRs) as 1⅓× up to 8× for minimizing the charge redistribution loss. The reconfigurable feature also dynamically tunes to maximum power point tracking (MPPT) with the frequency modulation, resulting in a two-dimensional MPPT. Therefore, the voltage conversion efficiency (VCE) and the power conversion efficiency (PCE) are enhanced and flattened across a wide harvesting range as 0.45 to 3 V. In a conclusion, we successfully develop an energy harvesting method for the IoT smart nodes with lower cost, smaller size, higher conversion efficiency, and better applicability. For the biomedical devices, this dissertation presents a novel cost-effective automatic resonance tracking method with maximum power transfer (MPT) for piezoelectric transducers (PT). The proposed tracking method is based on a band-pass filter (BPF) oscillator, exploiting the PT’s intrinsic resonance point through a sensing bridge. It guarantees automatic resonance tracking and maximum electrical power converted into mechanical motion regardless of process variations and environmental interferences. Thus, the proposed BPF oscillator-based scheme was designed for an ultrasonic vessel sealing and dissecting (UVSD) system. The sealing and dissecting functions were verified experimentally in chicken tissue and glycerin. Furthermore, a combined sensing scheme circuit allows multiple surgical tissue debulking, vessel sealer and dissector (VSD) technologies to operate from the same sensing scheme board. Its advantage is that a single driver controller could be used for both systems simplifying the complexity and design cost. In a conclusion, we successfully develop an ultrasonic scalpel to replace the other electrosurgical counterparts and the conventional scalpels with lower cost and better functionality

    Power Management Circuits for Energy Harvesting Applications

    Get PDF
    Energy harvesting is the process of converting ambient available energy into usable electrical energy. Multiple types of sources are can be used to harness environmental energy: solar cells, kinetic transducers, thermal energy, and electromagnetic waves. This dissertation proposal focuses on the design of high efficiency, ultra-low power, power management units for DC energy harvesting sources. New architectures and design techniques are introduced to achieve high efficiency and performance while achieving maximum power extraction from the sources. The first part of the dissertation focuses on the application of inductive switching regulators and their use in energy harvesting applications. The second implements capacitive switching regulators to minimize the use of external components and present a minimal footprint solution for energy harvesting power management. Analysis and theoretical background for all switching regulators and linear regulators are described in detail. Both solutions demonstrate how low power, high efficiency design allows for a self-sustaining, operational device which can tackle the two main concerns for energy harvesting: maximum power extraction and voltage regulation. Furthermore, a practical demonstration with an Internet of Things type node is tested and positive results shown by a fully powered device from harvested energy. All systems were designed, implemented and tested to demonstrate proof-of-concept prototypes
    corecore