3,565 research outputs found

    An Extended CMOS ISFET Model Incorporating the Physical Design Geometry and the Effects on Performance and Offset Variation

    No full text
    This paper presents an extended model for the CMOS-based ion-sensitive field-effect transistor, incorporating design parameters associated with the physical geometry of the device. This can, for the first time, provide a good match between calculated and measured characteristics by taking into account the effects of nonidealities such as threshold voltage variation and sensor noise. The model is evaluated through a number of devices with varying design parameters (chemical sensing area and MOSFET dimensions) fabricated in a commercially available 0.35-µm CMOS technology. Threshold voltage, subthreshold slope, chemical sensitivity, drift, and noise were measured and compared with the simulated results. The first- and second-order effects are analyzed in detail, and it is shown that the sensors' performance was in agreement with the proposed model

    Total dose evaluation of deep submicron CMOS imaging technology through elementary device and pixel array behavior analysis

    Get PDF
    Ionizing radiation effects on CMOS image sensors (CIS) manufactured using a 0.18 µm imaging technology are presented through the behavior analysis of elementary structures, such as field oxide FET, gated diodes, photodiodes and MOSFETs. Oxide characterizations appear necessary to understand ionizing dose effects on devices and then on image sensors. The main degradations observed are photodiode dark current increases (caused by a generation current enhancement), minimum size NMOSFET off-state current rises and minimum size PMOSFET radiation induced narrow channel effects. All these effects are attributed to the shallow trench isolation degradation which appears much more sensitive to ionizing radiation than inter layer dielectrics. Unusual post annealing effects are reported in these thick oxides. Finally, the consequences on sensor design are discussed thanks to an irradiated pixel array and a comparison with previous work is discussed

    Robust low-power digital circuit design in nano-CMOS technologies

    Get PDF
    Device scaling has resulted in large scale integrated, high performance, low-power, and low cost systems. However the move towards sub-100 nm technology nodes has increased variability in device characteristics due to large process variations. Variability has severe implications on digital circuit design by causing timing uncertainties in combinational circuits, degrading yield and reliability of memory elements, and increasing power density due to slow scaling of supply voltage. Conventional design methods add large pessimistic safety margins to mitigate increased variability, however, they incur large power and performance loss as the combination of worst cases occurs very rarely. In-situ monitoring of timing failures provides an opportunity to dynamically tune safety margins in proportion to on-chip variability that can significantly minimize power and performance losses. We demonstrated by simulations two delay sensor designs to detect timing failures in advance that can be coupled with different compensation techniques such as voltage scaling, body biasing, or frequency scaling to avoid actual timing failures. Our simulation results using 45 nm and 32 nm technology BSIM4 models indicate significant reduction in total power consumption under temperature and statistical variations. Future work involves using dual sensing to avoid useless voltage scaling that incurs a speed loss. SRAM cache is the first victim of increased process variations that requires handcrafted design to meet area, power, and performance requirements. We have proposed novel 6 transistors (6T), 7 transistors (7T), and 8 transistors (8T)-SRAM cells that enable variability tolerant and low-power SRAM cache designs. Increased sense-amplifier offset voltage due to device mismatch arising from high variability increases delay and power consumption of SRAM design. We have proposed two novel design techniques to reduce offset voltage dependent delays providing a high speed low-power SRAM design. Increasing leakage currents in nano-CMOS technologies pose a major challenge to a low-power reliable design. We have investigated novel segmented supply voltage architecture to reduce leakage power of the SRAM caches since they occupy bulk of the total chip area and power. Future work involves developing leakage reduction methods for the combination logic designs including SRAM peripherals

    Low-power switched capacitor voltage reference

    Get PDF
    Low-power analog design represents a developing technological trend as it emerges from a rather limited range of applications to a much wider arena affecting mainstream market segments. It especially affects portable electronics with respect to battery life, performance, and physical size. Meanwhile, low-power analog design enables technologies such as sensor networks and RFID. Research opportunities abound to exploit the potential of low power analog design, apply low-power to established fields, and explore new applications. The goal of this effort is to design a low-power reference circuit that delivers an accurate reference with very minimal power consumption. The circuit and device level low-power design techniques are suitable for a wide range of applications. To meet this goal, switched capacitor bandgap architecture was chosen. It is the most suitable for developing a systematic, and groundup, low-power design approach. In addition, the low-power analog cell library developed would facilitate building a more complex low-power system. A low-power switched capacitor bandgap was designed, fabricated, and fully tested. The bandgap generates a stable 0.6-V reference voltage, in both the discrete-time and continuous-time domain. The system was thoroughly tested and individual building blocks were characterized. The reference voltage is temperature stable, with less than a 100 ppm/°C drift, over a --60 dB power supply rejection, and below a 1 [Mu]A total supply current (excluding optional track-and-hold). Besides using it as a voltage reference, potential applications are also described using derivatives of this switched capacitor bandgap, specifically supply supervisory and on-chip thermal regulation

    A micropower centroiding vision processor

    Get PDF
    Published versio

    Circuit Techniques for Low-Power and Secure Internet-of-Things Systems

    Full text link
    The coming of Internet of Things (IoT) is expected to connect the physical world to the cyber world through ubiquitous sensors, actuators and computers. The nature of these applications demand long battery life and strong data security. To connect billions of things in the world, the hardware platform for IoT systems must be optimized towards low power consumption, high energy efficiency and low cost. With these constraints, the security of IoT systems become a even more difficult problem compared to that of computer systems. A new holistic system design considering both hardware and software implementations is demanded to face these new challenges. In this work, highly robust and low-cost true random number generators (TRNGs) and physically unclonable functions (PUFs) are designed and implemented as security primitives for secret key management in IoT systems. They provide three critical functions for crypto systems including runtime secret key generation, secure key storage and lightweight device authentication. To achieve robustness and simplicity, the concept of frequency collapse in multi-mode oscillator is proposed, which can effectively amplify the desired random variable in CMOS devices (i.e. process variation or noise) and provide a runtime monitor of the output quality. A TRNG with self-tuning loop to achieve robust operation across -40 to 120 degree Celsius and 0.6 to 1V variations, a TRNG that can be fully synthesized with only standard cells and commercial placement and routing tools, and a PUF with runtime filtering to achieve robust authentication, are designed based upon this concept and verified in several CMOS technology nodes. In addition, a 2-transistor sub-threshold amplifier based "weak" PUF is also presented for chip identification and key storage. This PUF achieves state-of-the-art 1.65% native unstable bit, 1.5fJ per bit energy efficiency, and 3.16% flipping bits across -40 to 120 degree Celsius range at the same time, while occupying only 553 feature size square area in 180nm CMOS. Secondly, the potential security threats of hardware Trojan is investigated and a new Trojan attack using analog behavior of digital processors is proposed as the first stealthy and controllable fabrication-time hardware attack. Hardware Trojan is an emerging concern about globalization of semiconductor supply chain, which can result in catastrophic attacks that are extremely difficult to find and protect against. Hardware Trojans proposed in previous works are based on either design-time code injection to hardware description language or fabrication-time modification of processing steps. There have been defenses developed for both types of attacks. A third type of attack that combines the benefits of logical stealthy and controllability in design-time attacks and physical "invisibility" is proposed in this work that crosses the analog and digital domains. The attack eludes activation by a diverse set of benchmarks and evades known defenses. Lastly, in addition to security-related circuits, physical sensors are also studied as fundamental building blocks of IoT systems in this work. Temperature sensing is one of the most desired functions for a wide range of IoT applications. A sub-threshold oscillator based digital temperature sensor utilizing the exponential temperature dependence of sub-threshold current is proposed and implemented. In 180nm CMOS, it achieves 0.22/0.19K inaccuracy and 73mK noise-limited resolution with only 8865 square micrometer additional area and 75nW extra power consumption to an existing IoT system.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/138779/1/kaiyuan_1.pd

    Wide-Supply-Range All-Digital Leakage Variation Sensor for On-Chip Process and Temperature Monitoring

    Get PDF
    Variation in process, voltage and temperature is a major obstacle in achieving energy-efficient operation of LSI. This paper proposes an all-digital on-chip circuit to monitor leakage current variations of both of the nMOSFET and pMOSFET independently. As leakage current is highly sensitive to threshold voltage and temperature, the circuit is suitable for tracking process and temperature variation. The circuit uses reconfigurable inhomogeneity to obtain statistical properties from a single monitor instance. A compact reconfigurable inverter topology is proposed to implement the monitor circuit. The compact and digital nature of the inverter enables cell-based design, which will reduce design costs. Measurement results from a 65 nm test chip show the validity of the proposed circuit. For a 124 sample size for both of the nMOSFET and pMOSFET, the monitor area is 4500 μm2 and active power consumption is 76 nW at 0.8 V operation. The proposed technique enables area-efficient and low-cost implementation thus can be used in product chips for applications such as dynamic energy and thermal management, testing and post-silicon tuning

    Radiation Hardening of Digital Color CMOS Camera-on-a-Chip Building Blocks for Multi-MGy Total Ionizing Dose Environments

    Get PDF
    The Total Ionizing Dose (TID) hardness of digital color Camera-on-a-Chip (CoC) building blocks is explored in the Multi-MGy range using 60Co gamma-ray irradiations. The performances of the following CoC subcomponents are studied: radiation hardened (RH) pixel and photodiode designs, RH readout chain, Color Filter Arrays (CFA) and column RH Analog-to-Digital Converters (ADC). Several radiation hardness improvements are reported (on the readout chain and on dark current). CFAs and ADCs degradations appear to be very weak at the maximum TID of 6 MGy(SiO2), 600 Mrad. In the end, this study demonstrates the feasibility of a MGy rad-hard CMOS color digital camera-on-a-chip, illustrated by a color image captured after 6 MGy(SiO2) with no obvious degradation. An original dark current reduction mechanism in irradiated CMOS Image Sensors is also reported and discussed

    Solid State Circuits Technologies

    Get PDF
    The evolution of solid-state circuit technology has a long history within a relatively short period of time. This technology has lead to the modern information society that connects us and tools, a large market, and many types of products and applications. The solid-state circuit technology continuously evolves via breakthroughs and improvements every year. This book is devoted to review and present novel approaches for some of the main issues involved in this exciting and vigorous technology. The book is composed of 22 chapters, written by authors coming from 30 different institutions located in 12 different countries throughout the Americas, Asia and Europe. Thus, reflecting the wide international contribution to the book. The broad range of subjects presented in the book offers a general overview of the main issues in modern solid-state circuit technology. Furthermore, the book offers an in depth analysis on specific subjects for specialists. We believe the book is of great scientific and educational value for many readers. I am profoundly indebted to the support provided by all of those involved in the work. First and foremost I would like to acknowledge and thank the authors who worked hard and generously agreed to share their results and knowledge. Second I would like to express my gratitude to the Intech team that invited me to edit the book and give me their full support and a fruitful experience while working together to combine this book
    corecore