230 research outputs found

    Design and Performance Evaluation of a Time Domain Microwave Imaging System

    Get PDF
    We design a time domain microwave system dedicated to medical imaging. The measurement accuracy of the system, that is, signal-to-noise ratio, due to voltage noise and timing noise, is evaluated. Particularly, the effect of coupling media on the measurement accuracy is investigated both numerically and experimentally. The results suggest that the use of suitable coupling media betters the measurement accuracy in the frequency range of interest. A signal-to-noise ratio higher than 30 dB is achievable in the range of 500 MHz to 3 GHz when the effective sampling rate is 50 Gsa/s. It is also indicated that the effect of the timing jitter on the strongest received signal is comparable to that of the voltage noise

    Aika-digitaalimuunnin laajakaistaisiin aikapohjaisiin analogia-digitaalimuuntimiin

    Get PDF
    Modern deeply scaled semiconductor processes make the design of voltage-domain circuits increasingly challenging. On the contrary, the area and power consumption of digital circuits are improving with every new process node. Consequently, digital solutions are designed in place of their purely analog counterparts in applications such as analog-to-digital (A/D) conversion. Time-based analog-to-digital converters (ADC) employ digital-intensive architectures by processing analog quantities in time-domain. The quantization step of the time-based A/D-conversion is carried out by a time-to-digital converter (TDC). A free-running ring oscillator -based TDC design is presented for use in wideband time-based ADCs. The proposed architecture aims to maximize time resolution and full-scale range, and to achieve error resilient conversion performance with minimized power and area consumptions. The time resolution is maximized by employing a high-frequency multipath ring oscillator, and the full-scale range is extended using a high-speed gray counter. The error resilience is achieved by custom sense-amplifier -based sampling flip-flops, gray coded counter and a digital error correction algorithm for counter sampling error correction. The implemented design achieves up to 9-bit effective resolution at 250 MS/s with 4.3 milliwatt power consumption.Modernien puolijohdeteknologioiden skaalautumisen seurauksena jÀnnitetason piirien suunnittelu tulee entistÀ haasteellisemmaksi. Toisaalta digitaalisten piirirakenteiden pinta-ala sekÀ tehonkulutus pienenevÀt prosessikehityksen myötÀ. TÀstÀ syystÀ digitaalisia ratkaisuja suunnitellaan vastaavien puhtaasti analogisien rakenteiden tilalle. Analogia-digitaalimuunnos (A/D-muunnos) voidaan toteuttaa jÀnnitetason sijaan aikatasossa kÀyttÀmÀllÀ aikapohjaisia A/D-muuntimia, jotka ovat rakenteeltaan pÀÀosin digitaalisia. Kvantisointivaihe aikapohjaisessa A/D-muuntimessa toteutetaan aika-digitaalimuuntimella. Työ esittelee vapaasti oskilloivaan silmukkaoskillaattoriin perustuvan aika-digitaalimuuntimen, joka on suunniteltu kÀytettÀvÀksi laajakaistaisessa aikapohjaisessa A/D-muuntimessa. Esitelty rakenne pyrkii maksimoimaan muuntimen aikaresoluution sekÀ muunnosalueen, sekÀ saavuttamaan virhesietoisen muunnostoiminnan minimoidulla tehon sekÀ pinta-alan kulutuksella. Aikaresoluutio on maksimoitu hyödyntÀmÀllÀ suuritaajuista monipolkuista silmukkaoskillaattoria, ja muunnosalue on maksimoitu nopealla Gray-koodi -laskuripiirillÀ. Muunnosprosessin virhesietoisuus on saavutettu toteuttamalla nÀytteistys herkillÀ kiikkuelementeillÀ, hyödyntÀmÀllÀ Gray-koodattua laskuria, sekÀ jÀlkiprosessoimalla laskurin nÀytteistetyt arvot virheenkorjausalgoritmilla. Esitelty muunnintoteutus saavuttaa 9 bitin efektiivisen resoluution 250 MS/s nÀytetaajuudella ja 4.3 milliwatin tehonkulutuksella

    Ultra wideband communication link

    Get PDF
    Ultra-wideband communication (UWB) has been a topic of extensive research in recent years especially for its short-range communication and indoor applications. The preliminary objective of the project was to develop a description and understanding of the basic components of the communication link at microwave frequencies in order to achieve the primary objective of establishing a communication setup at a bandwidth of 2.5 GHz for testing Ultra Wideband (UWB) antennas. This was achieved with the aid of commercially available optical system which was modified for the purpose. Beginning with the generation of baseband narrow pulses with energy spanning over a broad frequency range, through multiplexing of different parallel channels carrying these pulses into a single stream, to finally capturing the received signal to understand the effect of the communication link formed; all provided basis for identifying the issues and possible solutions to establishing a reliable communication link at UWB frequency

    Contribution to the design of continuous -time Sigma - Delta Modulators based on time delay elements

    Get PDF
    The research carried out in this thesis is focused in the development of a new class of data converters for digital radio. There are two main architectures for communication receivers which perform a digital demodulation. One of them is based on analog demodulation to the base band and digitization of the I/Q components. Another option is to digitize the band pass signal at the output of the IF stage using a bandpass Sigma-Delta modulator. Bandpass Sigma- Delta modulators can be implemented with discrete-time circuits, using switched capacitors or continuous-time circuits. The main innovation introduced in this work is the use of passive transmission lines in the loop filter of a bandpass continuous-time Sigma-Delta modulator instead of the conventional solution with gm-C or LC resonators. As long as transmission lines are used as replacement of a LC resonator in RF technology, it seems compelling that transmission lines could improve bandpass continuous-time Sigma-Delta modulators. The analysis of a Sigma- Delta modulator using distributed resonators has led to a completely new family of Sigma- Delta modulators which possess properties inherited both from continuous-time and discretetime Sigma-Delta modulators. In this thesis we present the basic theory and the practical design trade-offs of this new family of Sigma-Delta modulators. Three demonstration chips have been implemented to validate the theoretical developments. The first two are a proof of concept of the application of transmission lines to build lowpass and bandpass modulators. The third chip summarizes all the contributions of the thesis. It consists of a transmission line Sigma-Delta modulator which combines subsampling techniques, a mismatch insensitive circuitry and a quadrature architecture to implement the IF to digital stage of a receiver

    Components for Wide Bandwidth Signal Processing in Radio Astronomy

    Get PDF
    In radio astronomy wider observing bandwidths are constantly desired for the reasons of improved sensitivity and velocity coverage. As observing frequencies move steadily higher these needs become even more pressing. In order to process wider bandwidths, components that can perform at higher frequencies are required. The chief limiting component in the area of digital spectrometers and correlators is the digitiser. This is the component that samples and quantises the bandwidth of interest for further digital processing, and must function at a sample rate of at least twice the operating bandwidth. In this work a range of high speed digitiser integrated circuits (IC) are designed using an advanced InP HBT semiconductor process and their performance limits analysed. These digitiser ICs are shown to operate at up to 10 giga-samples/s, significantly faster than existing digitisers, and a complete digitiser system incorporating one of these is designed and tested that operates at up to 4 giga-samples/s, giving 2 GHz bandwidth coverage. The digitisers presented include a novel photonic I/O digitiser which contains an integrated photonic interface and is the first digitiser device reported with integrated photonic connectivity. In the complementary area of analogue correlators the limiting component is the device which performs the multiplication operation inherent in the correlation process. A 15 GHz analogue multiplier suitable for such systems is designed and tested and a full noise analysis of multipliers in analogue correlators presented. A further multiplier design in SiGe HBT technology is also presented which offers benefits in the area of low frequency noise. In the effort to process even wider bandwidths, applications of photonics to digitisers and multipliers are investigated. A new architecture for a wide bandwidth photonic multiplier is presented and its noise properties analysed, and the use of photonics to increase the sample rate of digitisers examined

    Research on low power technology by AC power supply circuits

    Get PDF
    戶ćșŠ:新 ; 栱摊ç•Șć·:ç”Č3692ć· ; ć­ŠäœăźçšźéĄž:ćšćŁ«(ć·„ć­Š) ; 授䞎ćčŽæœˆæ—„:2012/9/15 ; æ—©ć€§ć­Šäœèš˜ç•Șć·:新6060Waseda Universit
    • 

    corecore