18,338 research outputs found

    Bessel Functions in Mass Action. Modeling of Memories and Remembrances

    Full text link
    Data from experimental observations of a class of neurological processes (Freeman K-sets) present functional distribution reproducing Bessel function behavior. We model such processes with couples of damped/amplified oscillators which provide time dependent representation of Bessel equation. The root loci of poles and zeros conform to solutions of K-sets. Some light is shed on the problem of filling the gap between the cellular level dynamics and the brain functional activity. Breakdown of time-reversal symmetry is related with the cortex thermodynamic features. This provides a possible mechanism to deduce lifetime of recorded memory.Comment: 16 pages, 9 figures, Physics Letters A, 2015 in pres

    Quantum state transfer for multi-input linear quantum systems

    Full text link
    Effective state transfer is one of the most important problems in quantum information processing. Typically, a quantum information device is composed of many subsystems with multi-input ports. In this paper, we develop a general theory describing the condition for perfect state transfer from the multi-input ports to the internal system components, for general passive linear quantum systems. The key notion used is the zero of the transfer function matrix. Application to entanglement generation and distribution in a quantum network is also discussed.Comment: 6 pages, 3 figures. A preliminary condensed version of this work will appear in Proceedings of the 55th IEEE Conference on Decision and Contro

    Pade approximations of solitary wave solutions of the Gross-Pitaevskii equation

    Full text link
    Pade approximants are used to find approximate vortex solutions of any winding number in the context of Gross-Pitaevskii equation for a uniform condensate and condensates with axisymmetric trapping potentials. Rational function and generalised rational function approximations of axisymmetric solitary waves of the Gross-Pitaevskii equation are obtained in two and three dimensions. These approximations are used to establish a new mechanism of vortex nucleation as a result of solitary wave interactions.Comment: In press by Journal of Physics: Mathematics and Genera

    Pulse and quench induced dynamical phase transition in a chiral multiferroic spin chain

    Full text link
    Quantum dynamics of magnetic order in a chiral multiferroic chain is studied. We consider two different scenarios: Ultrashort terahertz (THz) excitations or a sudden electric field quench. Performing analytical and numerical exact diagonalization calculations we trace the pulse induced spin dynamics and extract quantities that are relevant to quantum information processing. In particular, we analyze the dynamics of the system chirality, the von Neumann entropy, the pairwise and the many body entanglement. If the characteristic frequencies of the generated states are non-commensurate then a partial loss of pair concurrence occurs. Increasing the system size this effect becomes even more pronounced. Many particle entanglement and chirality are robust and persist in the incommensurate phase. To analyze the dynamical quantum transitions for the quenched and pulsed dynamics we combined the Weierstrass factorization technique for entire functions and Lanczos exact diagonalization method. For a small system we obtained analytical results including the rate function of Loschmidt echo. Exact numerical calculations for a system up to 40 spins confirm phase transition. Quench- induced dynamical transitions have been extensively studied recently. Here we show that related dynamical transitions can be achieved and controlled by appropriate electric field pulses.Comment: 13 pages, 10 figures, submitted in PR

    Active Vibration Control of Structures using an Impedance Matching Control Technique

    Get PDF
    Active vibration control of structures has gained a lot of interest in recent years. This paper presents an active vibration control methodology of a structure using piezoelectric actuators. The proposed methodology is useful in practical applications where the system to be controlled is difficult to model due to the presence of complex boundary conditions. The impedance matching control technique uses a power flow approach wherein the controller is designed such that the power flow into the structure is minimized. The system transfer function is obtained from the experimental collocated actuator/sensor pair data using Eigen Realisation Algorithm (ERA). The controller is designed for the system transfer function according to impedance matching theory. The above approach is targeted towards the vibration control of wind tunnel stings, which suffer from flow-induced vibration. A wind tunnel sting model is designed and fabricated for this study. The real time implementation of the impedance matching controller has been carried out using dSPACE® Digital Signal Processor (DSP) card. The results are encouraging and demonstrate the feasibility of applying this technique in the wind tunne

    Generalizations of the sampling theorem: Seven decades after Nyquist

    Get PDF
    The sampling theorem is one of the most basic and fascinating topics in engineering sciences. The most well-known form is Shannon's uniform-sampling theorem for bandlimited signals. Extensions of this to bandpass signals and multiband signals, and to nonuniform sampling are also well-known. The connection between such extensions and the theory of filter banks in DSP has been well established. This paper presents some of the less known aspects of sampling, with special emphasis on non bandlimited signals, pointwise stability of reconstruction, and reconstruction from nonuniform samples. Applications in multiresolution computation and in digital spline interpolation are also reviewed

    Interactions of vortices with rarefaction solitary waves in a Bose-Einstein condensate and their role in the decay of superfluid turbulence

    Full text link
    There are several ways to create the vorticity-free solitary waves -- rarefaction pulses -- in condensates: by the process of strongly nonequilibrium condensate formation in a weakly interacting Bose gas, by creating local depletion of the condensate density by a laser beam, and by moving a small object with supercritical velocities. Perturbations created by such waves colliding with vortices are studied in the context of the Gross-Pitaevskii model. We find that the effect of the interactions consists of two competing mechanisms: the creation of vortex line as rarefaction waves acquire circulation in a vicinity of a vortex core and the loss of the vortex line to sound due to Kelvin waves that are generated on vortex lines by rarefaction pulses. When a vortex ring collides with a rarefaction wave, the ring either stabilises to a smaller ring after emitting sound through Kelvin wave radiation or the entire energy of the vortex ring is lost to sound if the radius of the ring is of the order of the healing length. We show that during the time evolution of a tangle of vortices, the interactions with rarefaction pulses provide an important dissipation mechanism enhancing the decay of superfluid turbulence.Comment: Revised paper accepted by Phys. Rev.
    corecore