3,001 research outputs found

    A note on forbidding clique immersions

    Full text link
    Robertson and Seymour proved that the relation of graph immersion is well-quasi-ordered for finite graphs. Their proof uses the results of graph minors theory. Surprisingly, there is a very short proof of the corresponding rough structure theorem for graphs without KtK_t-immersions; it is based on the Gomory-Hu theorem. The same proof also works to establish a rough structure theorem for Eulerian digraphs without Kt\vec{K}_t-immersions, where Kt\vec{K}_t denotes the bidirected complete digraph of order tt

    Cutwidth: obstructions and algorithmic aspects

    Get PDF
    Cutwidth is one of the classic layout parameters for graphs. It measures how well one can order the vertices of a graph in a linear manner, so that the maximum number of edges between any prefix and its complement suffix is minimized. As graphs of cutwidth at most kk are closed under taking immersions, the results of Robertson and Seymour imply that there is a finite list of minimal immersion obstructions for admitting a cut layout of width at most kk. We prove that every minimal immersion obstruction for cutwidth at most kk has size at most 2O(k3logk)2^{O(k^3\log k)}. As an interesting algorithmic byproduct, we design a new fixed-parameter algorithm for computing the cutwidth of a graph that runs in time 2O(k2logk)n2^{O(k^2\log k)}\cdot n, where kk is the optimum width and nn is the number of vertices. While being slower by a logk\log k-factor in the exponent than the fastest known algorithm, given by Thilikos, Bodlaender, and Serna in [Cutwidth I: A linear time fixed parameter algorithm, J. Algorithms, 56(1):1--24, 2005] and [Cutwidth II: Algorithms for partial ww-trees of bounded degree, J. Algorithms, 56(1):25--49, 2005], our algorithm has the advantage of being simpler and self-contained; arguably, it explains better the combinatorics of optimum-width layouts

    Multigraphs without large bonds are wqo by contraction

    Full text link
    We show that the class of multigraphs with at most pp connected components and bonds of size at most kk is well-quasi-ordered by edge contraction for all positive integers p,kp,k. (A bond is a minimal non-empty edge cut.) We also characterize canonical antichains for this relation and show that they are fundamental

    Constructing graphs with no immersion of large complete graphs

    Full text link
    In 1989, Lescure and Meyniel proved, for d=5,6d=5, 6, that every dd-chromatic graph contains an immersion of KdK_d, and in 2003 Abu-Khzam and Langston conjectured that this holds for all dd. In 2010, DeVos, Kawarabayashi, Mohar, and Okamura proved this conjecture for d=7d = 7. In each proof, the dd-chromatic assumption was not fully utilized, as the proofs only use the fact that a dd-critical graph has minimum degree at least d1d - 1. DeVos, Dvo\v{r}\'ak, Fox, McDonald, Mohar, and Scheide show the stronger conjecture that a graph with minimum degree d1d-1 has an immersion of KdK_d fails for d=10d=10 and d12d\geq 12 with a finite number of examples for each value of dd, and small chromatic number relative to dd, but it is shown that a minimum degree of 200d200d does guarantee an immersion of KdK_d. In this paper we show that the stronger conjecture is false for d=8,9,11d=8,9,11 and give infinite families of examples with minimum degree d1d-1 and chromatic number d3d-3 or d2d-2 that do not contain an immersion of KdK_d. Our examples can be up to (d2)(d-2)-edge-connected. We show, using Haj\'os' Construction, that there is an infinite class of non-(d1)(d-1)-colorable graphs that contain an immersion of KdK_d. We conclude with some open questions, and the conjecture that a graph GG with minimum degree d1d - 1 and more than V(G)1+m(d+1)\frac{|V(G)|}{1+m(d+1)} vertices of degree at least mdmd has an immersion of KdK_d

    A General Framework for Well-Structured Graph Transformation Systems

    Full text link
    Graph transformation systems (GTSs) can be seen as wellstructured transition systems (WSTSs), thus obtaining decidability results for certain classes of GTSs. In earlier work it was shown that wellstructuredness can be obtained using the minor ordering as a well-quasiorder. In this paper we extend this idea to obtain a general framework in which several types of GTSs can be seen as (restricted) WSTSs. We instantiate this framework with the subgraph ordering and the induced subgraph ordering and apply it to analyse a simple access rights management system.Comment: Extended version (including proofs) of a paper accepted at CONCUR 201
    corecore