3,403 research outputs found

    On weakly symmetric graphs of order twice a prime

    Get PDF
    A graph is weakly symmetric if its automorphism group is both vertex-transitive and edge-transitive. In 1971, Chao characterized all weakly symmetric graphs of prime order and showed that such graphs are also transitive on directed edges. In this paper we determine all weakly symmetric graphs of order twice a prime and show that these graphs too are directed-edge transitive. © 1987

    Magic State Distillation with Low Space Overhead and Optimal Asymptotic Input Count

    Full text link
    We present an infinite family of protocols to distill magic states for TT-gates that has a low space overhead and uses an asymptotic number of input magic states to achieve a given target error that is conjectured to be optimal. The space overhead, defined as the ratio between the physical qubits to the number of output magic states, is asymptotically constant, while both the number of input magic states used per output state and the TT-gate depth of the circuit scale linearly in the logarithm of the target error δ\delta (up to loglog1/δ\log \log 1/\delta). Unlike other distillation protocols, this protocol achieves this performance without concatenation and the input magic states are injected at various steps in the circuit rather than all at the start of the circuit. The protocol can be modified to distill magic states for other gates at the third level of the Clifford hierarchy, with the same asymptotic performance. The protocol relies on the construction of weakly self-dual CSS codes with many logical qubits and large distance, allowing us to implement control-SWAPs on multiple qubits. We call this code the "inner code". The control-SWAPs are then used to measure properties of the magic state and detect errors, using another code that we call the "outer code". Alternatively, we use weakly-self dual CSS codes which implement controlled Hadamards for the inner code, reducing circuit depth. We present several specific small examples of this protocol.Comment: 39 pages, (v2) renamed "odd" and "even" weakly self-dual CSS codes of (v1) to "normal" and "hyperbolic" codes, respectively. (v3) published in Quantu

    Dynamical properties of profinite actions

    Get PDF
    We study profinite actions of residually finite groups in terms of weak containment. We show that two strongly ergodic profinite actions of a group are weakly equivalent if and only if they are isomorphic. This allows us to construct continuum many pairwise weakly inequivalent free actions of a large class of groups, including free groups and linear groups with property (T). We also prove that for chains of subgroups of finite index, Lubotzky's property (τ\tau) is inherited when taking the intersection with a fixed subgroup of finite index. That this is not true for families of subgroups in general leads to answering the question of Lubotzky and Zuk, whether for families of subgroups, property (τ\tau) is inherited to the lattice of subgroups generated by the family. On the other hand, we show that for families of normal subgroups of finite index, the above intersection property does hold. In fact, one can give explicite estimates on how the spectral gap changes when passing to the intersection. Our results also have an interesting graph theoretical consequence that does not use the language of groups. Namely, we show that an expander covering tower of finite regular graphs is either bipartite or stays bounded away from being bipartite in the normalized edge distance.Comment: Corrections made based on the referee's comment
    corecore