738 research outputs found

    Positioning and trajectory following tasks in microsystems using model free visual servoing

    Get PDF
    In this paper, we explore model free visual servoing algorithms by experimentally evaluating their performances for various tasks performed on a microassembly workstation developed in our lab. Model free or so called uncalibrated visual servoing does not need the system calibration (microscope-camera-micromanipulator) and the model of the observed scene. It is robust to parameter changes and disturbances. We tested its performance in point-to-point positioning and various trajectory following tasks. Experimental results validate the utility of model free visual servoing in microassembly tasks

    Markerless visual servoing on unknown objects for humanoid robot platforms

    Full text link
    To precisely reach for an object with a humanoid robot, it is of central importance to have good knowledge of both end-effector, object pose and shape. In this work we propose a framework for markerless visual servoing on unknown objects, which is divided in four main parts: I) a least-squares minimization problem is formulated to find the volume of the object graspable by the robot's hand using its stereo vision; II) a recursive Bayesian filtering technique, based on Sequential Monte Carlo (SMC) filtering, estimates the 6D pose (position and orientation) of the robot's end-effector without the use of markers; III) a nonlinear constrained optimization problem is formulated to compute the desired graspable pose about the object; IV) an image-based visual servo control commands the robot's end-effector toward the desired pose. We demonstrate effectiveness and robustness of our approach with extensive experiments on the iCub humanoid robot platform, achieving real-time computation, smooth trajectories and sub-pixel precisions

    Model-based vs. model-free visual servoing: A Performance evaluation in microsystems

    Get PDF
    In this paper, model-based and model-free image based visual servoing (VS) approaches are implemented on a microassembly workstation, and their regulation and tracking performances are evaluated. A precise image based VS relies on computation of the image jacobian. In the model-based visual servoing, the image Jacobian is computed via calibrating the optical system. Precisely calibrated model based VS promises better positioning and tracking performance than the model-free approach. However, in the model-free approach, optical system calibration is not required due to the dynamic Jacobian estimation, thus it has the advantage of adapting to the different operating modes

    Image based visual servoing using bitangent points applied to planar shape alignment

    Get PDF
    We present visual servoing strategies based on bitangents for aligning planar shapes. In order to acquire bitangents we use convex-hull of a curve. Bitangent points are employed in the construction of a feature vector to be used in visual control. Experimental results obtained on a 7 DOF Mitsubishi PA10 robot, verifies the proposed method

    Visual Servoing from Deep Neural Networks

    Get PDF
    We present a deep neural network-based method to perform high-precision, robust and real-time 6 DOF visual servoing. The paper describes how to create a dataset simulating various perturbations (occlusions and lighting conditions) from a single real-world image of the scene. A convolutional neural network is fine-tuned using this dataset to estimate the relative pose between two images of the same scene. The output of the network is then employed in a visual servoing control scheme. The method converges robustly even in difficult real-world settings with strong lighting variations and occlusions.A positioning error of less than one millimeter is obtained in experiments with a 6 DOF robot.Comment: fixed authors lis

    PAMPC: Perception-Aware Model Predictive Control for Quadrotors

    Full text link
    We present the first perception-aware model predictive control framework for quadrotors that unifies control and planning with respect to action and perception objectives. Our framework leverages numerical optimization to compute trajectories that satisfy the system dynamics and require control inputs within the limits of the platform. Simultaneously, it optimizes perception objectives for robust and reliable sens- ing by maximizing the visibility of a point of interest and minimizing its velocity in the image plane. Considering both perception and action objectives for motion planning and control is challenging due to the possible conflicts arising from their respective requirements. For example, for a quadrotor to track a reference trajectory, it needs to rotate to align its thrust with the direction of the desired acceleration. However, the perception objective might require to minimize such rotation to maximize the visibility of a point of interest. A model-based optimization framework, able to consider both perception and action objectives and couple them through the system dynamics, is therefore necessary. Our perception-aware model predictive control framework works in a receding-horizon fashion by iteratively solving a non-linear optimization problem. It is capable of running in real-time, fully onboard our lightweight, small-scale quadrotor using a low-power ARM computer, to- gether with a visual-inertial odometry pipeline. We validate our approach in experiments demonstrating (I) the contradiction between perception and action objectives, and (II) improved behavior in extremely challenging lighting conditions

    Planar Object Tracking in the Wild: A Benchmark

    Full text link
    Planar object tracking is an actively studied problem in vision-based robotic applications. While several benchmarks have been constructed for evaluating state-of-the-art algorithms, there is a lack of video sequences captured in the wild rather than in constrained laboratory environment. In this paper, we present a carefully designed planar object tracking benchmark containing 210 videos of 30 planar objects sampled in the natural environment. In particular, for each object, we shoot seven videos involving various challenging factors, namely scale change, rotation, perspective distortion, motion blur, occlusion, out-of-view, and unconstrained. The ground truth is carefully annotated semi-manually to ensure the quality. Moreover, eleven state-of-the-art algorithms are evaluated on the benchmark using two evaluation metrics, with detailed analysis provided for the evaluation results. We expect the proposed benchmark to benefit future studies on planar object tracking.Comment: Accepted by ICRA 201
    • …
    corecore