2,903 research outputs found

    Exponential quantum enhancement for distributed addition with local nonlinearity

    Full text link
    We consider classical and entanglement-assisted versions of a distributed computation scheme that computes nonlinear Boolean functions of a set of input bits supplied by separated parties. Communication between the parties is restricted to take place through a specific apparatus which enforces the constraints that all nonlinear, nonlocal classical logic is performed by a single receiver, and that all communication occurs through a limited number of one-bit channels. In the entanglement-assisted version, the number of channels required to compute a Boolean function of fixed nonlinearity can become exponentially smaller than in the classical version. We demonstrate this exponential enhancement for the problem of distributed integer addition.Comment: To appear in Quantum Information Processin

    A C++ Class for Analyzing Vector Boolean Functions from a Cryptographic Perspective

    Get PDF
    In this paper, a C++ class for analising Vector Boolean Functions from a cryptographic perspective is presented. This implementation uses the NTL library from Victor Shoup, replacing some of the general purpose modules of this library by some more specialized and better suited to cryptography, and adding new modules that complement the existing ones. With this class, we can obtain the classical representation of Vector Boolean Function such as its Truth Table and Algebraic Normal Form (ANF). It is possible to calculate mathematical structures such as the Walsh Spectrum, Linear Profile, Differential Profile and Autocorrelation Spectrum. Cryptographic criteria such as nonlinearity, linearity distance, order of correlation immunity, bal-ancedness, algebraic degree and propagation criterion can be obtained with this class. It permits to find out some interesting cryptologic parameters such as linear structures, linear potential, differential potential and the maximum possible nonlinearity or linearity distance of a Vector Boolean Function with the same dimensions. Finally, operations such as to identify if two Vector Boolean Functions are equal, their sum, direct sum, composition, bricklayering, adding coordinate functions and obtaining the polynomial representation over GF(2n) of a Vector Boolean Function given the irreducible polynomial and its Truth Table are presented

    A delay differential model of ENSO variability: Parametric instability and the distribution of extremes

    Get PDF
    We consider a delay differential equation (DDE) model for El-Nino Southern Oscillation (ENSO) variability. The model combines two key mechanisms that participate in ENSO dynamics: delayed negative feedback and seasonal forcing. We perform stability analyses of the model in the three-dimensional space of its physically relevant parameters. Our results illustrate the role of these three parameters: strength of seasonal forcing bb, atmosphere-ocean coupling κ\kappa, and propagation period τ\tau of oceanic waves across the Tropical Pacific. Two regimes of variability, stable and unstable, are separated by a sharp neutral curve in the (b,τ)(b,\tau) plane at constant κ\kappa. The detailed structure of the neutral curve becomes very irregular and possibly fractal, while individual trajectories within the unstable region become highly complex and possibly chaotic, as the atmosphere-ocean coupling κ\kappa increases. In the unstable regime, spontaneous transitions occur in the mean ``temperature'' ({\it i.e.}, thermocline depth), period, and extreme annual values, for purely periodic, seasonal forcing. The model reproduces the Devil's bleachers characterizing other ENSO models, such as nonlinear, coupled systems of partial differential equations; some of the features of this behavior have been documented in general circulation models, as well as in observations. We expect, therefore, similar behavior in much more detailed and realistic models, where it is harder to describe its causes as completely.Comment: 22 pages, 9 figure

    Algorithm 959: VBF: A Library of C plus plus Classes for Vector Boolean Functions in Cryptography

    Full text link
    VBF is a collection of C++ classes designed for analyzing vector Boolean functions (functions that map a Boolean vector to another Boolean vector) from a cryptographic perspective. This implementation uses the NTL library from Victor Shoup, adding new modules that call NTL functions and complement the existing ones, making it better suited to cryptography. The class representing a vector Boolean function can be initialized by several alternative types of data structures such as Truth Table, Trace Representation, and Algebraic Normal Form (ANF), among others. The most relevant cryptographic criteria for both block and stream ciphers as well as for hash functions can be evaluated with VBF: it obtains the nonlinearity, linearity distance, algebraic degree, linear structures, and frequency distribution of the absolute values of the Walsh Spectrum or the Autocorrelation Spectrum, among others. In addition, operations such as equality testing, composition, inversion, sum, direct sum, bricklayering (parallel application of vector Boolean functions as employed in Rijndael cipher), and adding coordinate functions of two vector Boolean functions are presented. Finally, three real applications of the library are described: the first one analyzes the KASUMI block cipher, the second one analyzes the Mini-AES cipher, and the third one finds Boolean functions with very high nonlinearity, a key property for robustness against linear attacks

    Why and When Can Deep -- but Not Shallow -- Networks Avoid the Curse of Dimensionality: a Review

    Get PDF
    The paper characterizes classes of functions for which deep learning can be exponentially better than shallow learning. Deep convolutional networks are a special case of these conditions, though weight sharing is not the main reason for their exponential advantage
    corecore