1,137 research outputs found

    Parameter identification in a semilinear hyperbolic system

    Get PDF
    We consider the identification of a nonlinear friction law in a one-dimensional damped wave equation from additional boundary measurements. Well-posedness of the governing semilinear hyperbolic system is established via semigroup theory and contraction arguments. We then investigte the inverse problem of recovering the unknown nonlinear damping law from additional boundary measurements of the pressure drop along the pipe. This coefficient inverse problem is shown to be ill-posed and a variational regularization method is considered for its stable solution. We prove existence of minimizers for the Tikhonov functional and discuss the convergence of the regularized solutions under an approximate source condition. The meaning of this condition and some arguments for its validity are discussed in detail and numerical results are presented for illustration of the theoretical findings

    Preconditioners for state constrained optimal control problems\ud with Moreau-Yosida penalty function tube

    Get PDF
    Optimal control problems with partial differential equations play an important role in many applications. The inclusion of bound constraints for the state poses a significant challenge for optimization methods. Our focus here is on the incorporation of the constraints via the Moreau-Yosida regularization technique. This method has been studied recently and has proven to be advantageous compared to other approaches. In this paper we develop preconditioners for the efficient solution of the Newton steps associated with the fast solution of the Moreau-Yosida regularized problem. Numerical results illustrate the competitiveness of this approach. \ud \ud Copyright c 2000 John Wiley & Sons, Ltd

    Adaptive local minimax Galerkin methods for variational problems

    Full text link
    In many applications of practical interest, solutions of partial differential equation models arise as critical points of an underlying (energy) functional. If such solutions are saddle points, rather than being maxima or minima, then the theoretical framework is non-standard, and the development of suitable numerical approximation procedures turns out to be highly challenging. In this paper, our aim is to present an iterative discretization methodology for the numerical solution of nonlinear variational problems with multiple (saddle point) solutions. In contrast to traditional numerical approximation schemes, which typically fail in such situations, the key idea of the current work is to employ a simultaneous interplay of a previously developed local minimax approach and adaptive Galerkin discretizations. We thereby derive an adaptive local minimax Galerkin (LMMG) method, which combines the search for saddle point solutions and their approximation in finite-dimensional spaces in a highly effective way. Under certain assumptions, we will prove that the generated sequence of approximate solutions converges to the solution set of the variational problem. This general framework will be applied to the specific context of finite element discretizations of (singularly perturbed) semilinear elliptic boundary value problems, and a series of numerical experiments will be presented

    Additive domain decomposition operator splittings -- convergence analyses in a dissipative framework

    Full text link
    We analyze temporal approximation schemes based on overlapping domain decompositions. As such schemes enable computations on parallel and distributed hardware, they are commonly used when integrating large-scale parabolic systems. Our analysis is conducted by first casting the domain decomposition procedure into a variational framework based on weighted Sobolev spaces. The time integration of a parabolic system can then be interpreted as an operator splitting scheme applied to an abstract evolution equation governed by a maximal dissipative vector field. By utilizing this abstract setting, we derive an optimal temporal error analysis for the two most common choices of domain decomposition based integrators. Namely, alternating direction implicit schemes and additive splitting schemes of first and second order. For the standard first-order additive splitting scheme we also extend the error analysis to semilinear evolution equations, which may only have mild solutions.Comment: Please refer to the published article for the final version which also contains numerical experiments. Version 3 and 4: Only comments added. Version 2, page 2: Clarified statement on stability issues for ADI schemes with more than two operator
    corecore