42 research outputs found

    An Analysis of Radio-Frequency Geolocation Techniques for Satellite Systems Design

    Get PDF
    This research 1) evaluates the effectiveness of CubeSat radio-frequency geolocation and 2) analyzes the sensitivity of different RF algorithms to system parameters. A MATLAB simulation is developed to assess geolocation accuracy for variable system designs and techniques (AOA, TDOA, T/FDOA). An unconstrained maximum likelihood estimator (MLE) and three different digital elevation models (DEM) are utilized as the surface of the Earth constraint to improve geolocation accuracy. The results presented show the effectiveness of the MLE and DEM techniques, the sensitivity of AOA, TDOA, and T/FDOA algorithms, and the system level performance of a CubeSat geolocation cluster in a 500km circular orbit

    Recent Advances in Indoor Localization Systems and Technologies

    Get PDF
    Despite the enormous technical progress seen in the past few years, the maturity of indoor localization technologies has not yet reached the level of GNSS solutions. The 23 selected papers in this book present the recent advances and new developments in indoor localization systems and technologies, propose novel or improved methods with increased performance, provide insight into various aspects of quality control, and also introduce some unorthodox positioning methods

    Developing a person guidance module for hospital robots

    Get PDF
    This dissertation describes the design and implementation of the Person Guidance Module (PGM) that enables the IWARD (Intelligent Robot Swarm for attendance, Recognition, Cleaning and delivery) base robot to offer route guidance service to the patients or visitors inside the hospital arena. One of the common problems encountered in huge hospital buildings today is foreigners not being able to find their way around in the hospital. Although there are a variety of guide robots currently existing on the market and offering a wide range of guidance and related activities, they do not fit into the modular concept of the IWARD project. The PGM features a robust and foolproof non-hierarchical sensor fusion approach of an active RFID, stereovision and cricket mote sensor for guiding a patient to the X-ray room, or a visitor to a patient’s ward in every possible scenario in a complex, dynamic and crowded hospital environment. Moreover, the speed of the robot can be adjusted automatically according to the pace of the follower for physical comfort using this system. Furthermore, the module performs these tasks in any unconstructed environment solely from a robot’s onboard perceptual resources in order to limit the hardware installation costs and therefore the indoor setting support. Similar comprehensive solution in one single platform has remained elusive in existing literature. The finished module can be connected to any IWARD base robot using quick-change mechanical connections and standard electrical connections. The PGM module box is equipped with a Gumstix embedded computer for all module computing which is powered up automatically once the module box is inserted into the robot. In line with the general software architecture of the IWARD project, all software modules are developed as Orca2 components and cross-complied for Gumstix’s XScale processor. To support standardized communication between different software components, Internet Communications Engine (Ice) has been used as middleware. Additionally, plug-and-play capabilities have been developed and incorporated so that swarm system is aware at all times of which robot is equipped with PGM. Finally, in several field trials in hospital environments, the person guidance module has shown its suitability for a challenging real-world application as well as the necessary user acceptance
    corecore