11,884 research outputs found

    Leveraging Crowdsourcing Data For Deep Active Learning - An Application: Learning Intents in Alexa

    Full text link
    This paper presents a generic Bayesian framework that enables any deep learning model to actively learn from targeted crowds. Our framework inherits from recent advances in Bayesian deep learning, and extends existing work by considering the targeted crowdsourcing approach, where multiple annotators with unknown expertise contribute an uncontrolled amount (often limited) of annotations. Our framework leverages the low-rank structure in annotations to learn individual annotator expertise, which then helps to infer the true labels from noisy and sparse annotations. It provides a unified Bayesian model to simultaneously infer the true labels and train the deep learning model in order to reach an optimal learning efficacy. Finally, our framework exploits the uncertainty of the deep learning model during prediction as well as the annotators' estimated expertise to minimize the number of required annotations and annotators for optimally training the deep learning model. We evaluate the effectiveness of our framework for intent classification in Alexa (Amazon's personal assistant), using both synthetic and real-world datasets. Experiments show that our framework can accurately learn annotator expertise, infer true labels, and effectively reduce the amount of annotations in model training as compared to state-of-the-art approaches. We further discuss the potential of our proposed framework in bridging machine learning and crowdsourcing towards improved human-in-the-loop systems

    Engineering Crowdsourced Stream Processing Systems

    Full text link
    A crowdsourced stream processing system (CSP) is a system that incorporates crowdsourced tasks in the processing of a data stream. This can be seen as enabling crowdsourcing work to be applied on a sample of large-scale data at high speed, or equivalently, enabling stream processing to employ human intelligence. It also leads to a substantial expansion of the capabilities of data processing systems. Engineering a CSP system requires the combination of human and machine computation elements. From a general systems theory perspective, this means taking into account inherited as well as emerging properties from both these elements. In this paper, we position CSP systems within a broader taxonomy, outline a series of design principles and evaluation metrics, present an extensible framework for their design, and describe several design patterns. We showcase the capabilities of CSP systems by performing a case study that applies our proposed framework to the design and analysis of a real system (AIDR) that classifies social media messages during time-critical crisis events. Results show that compared to a pure stream processing system, AIDR can achieve a higher data classification accuracy, while compared to a pure crowdsourcing solution, the system makes better use of human workers by requiring much less manual work effort

    Crowdsourcing Without a Crowd: Reliable Online Species Identification Using Bayesian Models to Minimize Crowd Size

    Get PDF
    We present an incremental Bayesian model that resolves key issues of crowd size and data quality for consensus labeling. We evaluate our method using data collected from a real-world citizen science program, BeeWatch, which invites members of the public in the United Kingdom to classify (label) photographs of bumblebees as one of 22 possible species. The biological recording domain poses two key and hitherto unaddressed challenges for consensus models of crowdsourcing: (1) the large number of potential species makes classification difficult, and (2) this is compounded by limited crowd availability, stemming from both the inherent difficulty of the task and the lack of relevant skills among the general public. We demonstrate that consensus labels can be reliably found in such circumstances with very small crowd sizes of around three to five users (i.e., through group sourcing). Our incremental Bayesian model, which minimizes crowd size by re-evaluating the quality of the consensus label following each species identification solicited from the crowd, is competitive with a Bayesian approach that uses a larger but fixed crowd size and outperforms majority voting. These results have important ecological applicability: biological recording programs such as BeeWatch can sustain themselves when resources such as taxonomic experts to confirm identifications by photo submitters are scarce (as is typically the case), and feedback can be provided to submitters in a timely fashion. More generally, our model provides benefits to any crowdsourced consensus labeling task where there is a cost (financial or otherwise) associated with soliciting a label
    • …
    corecore