1,898 research outputs found

    Wireless Power Transfer and Data Collection in Wireless Sensor Networks

    Full text link
    In a rechargeable wireless sensor network, the data packets are generated by sensor nodes at a specific data rate, and transmitted to a base station. Moreover, the base station transfers power to the nodes by using Wireless Power Transfer (WPT) to extend their battery life. However, inadequately scheduling WPT and data collection causes some of the nodes to drain their battery and have their data buffer overflow, while the other nodes waste their harvested energy, which is more than they need to transmit their packets. In this paper, we investigate a novel optimal scheduling strategy, called EHMDP, aiming to minimize data packet loss from a network of sensor nodes in terms of the nodes' energy consumption and data queue state information. The scheduling problem is first formulated by a centralized MDP model, assuming that the complete states of each node are well known by the base station. This presents the upper bound of the data that can be collected in a rechargeable wireless sensor network. Next, we relax the assumption of the availability of full state information so that the data transmission and WPT can be semi-decentralized. The simulation results show that, in terms of network throughput and packet loss rate, the proposed algorithm significantly improves the network performance.Comment: 30 pages, 8 figures, accepted to IEEE Transactions on Vehicular Technolog

    Energy Harvesting Wireless Communications: A Review of Recent Advances

    Get PDF
    This article summarizes recent contributions in the broad area of energy harvesting wireless communications. In particular, we provide the current state of the art for wireless networks composed of energy harvesting nodes, starting from the information-theoretic performance limits to transmission scheduling policies and resource allocation, medium access and networking issues. The emerging related area of energy transfer for self-sustaining energy harvesting wireless networks is considered in detail covering both energy cooperation aspects and simultaneous energy and information transfer. Various potential models with energy harvesting nodes at different network scales are reviewed as well as models for energy consumption at the nodes.Comment: To appear in the IEEE Journal of Selected Areas in Communications (Special Issue: Wireless Communications Powered by Energy Harvesting and Wireless Energy Transfer

    A Survey on Mobile Charging Techniques in Wireless Rechargeable Sensor Networks

    Get PDF
    The recent breakthrough in wireless power transfer (WPT) technology has empowered wireless rechargeable sensor networks (WRSNs) by facilitating stable and continuous energy supply to sensors through mobile chargers (MCs). A plethora of studies have been carried out over the last decade in this regard. However, no comprehensive survey exists to compile the state-of-the-art literature and provide insight into future research directions. To fill this gap, we put forward a detailed survey on mobile charging techniques (MCTs) in WRSNs. In particular, we first describe the network model, various WPT techniques with empirical models, system design issues and performance metrics concerning the MCTs. Next, we introduce an exhaustive taxonomy of the MCTs based on various design attributes and then review the literature by categorizing it into periodic and on-demand charging techniques. In addition, we compare the state-of-the-art MCTs in terms of objectives, constraints, solution approaches, charging options, design issues, performance metrics, evaluation methods, and limitations. Finally, we highlight some potential directions for future research

    Flexible Integration of Alternative Energy Sources for Autonomous Sensing

    No full text
    Recent developments in energy harvesting and autonomous sensing mean that it is now possible to power sensors solely from energy harvested from the environment. Clearly this is dependent on sufficient environmental energy being present. The range of feasible environments for operation can be extended by combining multiple energy sources on a sensor node. The effective monitoring of their energy resources is also important to deliver sustained and effective operation. This paper outlines the issues concerned with combining and managing multiple energy sources on sensor nodes. This problem is approached from both a hardware and embedded software viewpoint. A complete system is described in which energy is harvested from both light and vibration, stored in a common energy store, and interrogated and managed by the node

    Extending Wireless Rechargeable Sensor Network Life without Full Knowledge

    Get PDF
    When extending the life of Wireless Rechargeable Sensor Networks (WRSN), one challenge is charging networks as they grow larger. Overcoming this limitation will render a WRSN more practical and highly adaptable to growth in the real world. Most charging algorithms require a priori full knowledge of sensor nodes’ power levels in order to determine the nodes that require charging. In this work, we present a probabilistic algorithm that extends the life of scalable WRSN without a priori power knowledge and without full network exploration. We develop a probability bound on the power level of the sensor nodes and utilize this bound to make decisions while exploring a WRSN.We verify the algorithm by simulating a wireless power transfer unmanned aerial vehicle, and charging a WRSN to extend its life. Our results show that, without knowledge, our proposed algorithm extends the life of a WRSN on average 90% of what an optimal full knowledge algorithm can achieve. This means that the charging robot does not need to explore the whole network, which enables the scaling of WRSN. We analyze the impact of network parameters on our algorithm and show that it is insensitive to a large range of parameter values

    Energy Sharing for Multiple Sensor Nodes with Finite Buffers

    Full text link
    We consider the problem of finding optimal energy sharing policies that maximize the network performance of a system comprising of multiple sensor nodes and a single energy harvesting (EH) source. Sensor nodes periodically sense the random field and generate data, which is stored in the corresponding data queues. The EH source harnesses energy from ambient energy sources and the generated energy is stored in an energy buffer. Sensor nodes receive energy for data transmission from the EH source. The EH source has to efficiently share the stored energy among the nodes in order to minimize the long-run average delay in data transmission. We formulate the problem of energy sharing between the nodes in the framework of average cost infinite-horizon Markov decision processes (MDPs). We develop efficient energy sharing algorithms, namely Q-learning algorithm with exploration mechanisms based on the ϵ\epsilon-greedy method as well as upper confidence bound (UCB). We extend these algorithms by incorporating state and action space aggregation to tackle state-action space explosion in the MDP. We also develop a cross entropy based method that incorporates policy parameterization in order to find near optimal energy sharing policies. Through simulations, we show that our algorithms yield energy sharing policies that outperform the heuristic greedy method.Comment: 38 pages, 10 figure
    corecore