1,032 research outputs found

    On the Capacity Region of Multi-Antenna Gaussian Broadcast Channels with Estimation Error

    Get PDF
    In this paper we consider the effect of channel estimation error on the capacity region of MIMO Gaussian broadcast channels. It is assumed that the receivers and the transmitter have (the same) estimates of the channel coefficients (i.e., the feedback channel is noiseless). We obtain an achievable rate region based on the dirty paper coding scheme. We show that this region is given by the capacity region of a dual multi-access channel with a noise covariance that depends on the transmit power. We explore this duality to give the asymptotic behavior of the sum-rate for a system with a large number of user, i.e., n rarr infin. It is shown that as long as the estimation error is of fixed (w.r.t n) variance, the sum-capacity is of order M log log n, where M is the number of antennas deployed at the transmitter. We further obtain the sum-rate loss due to the estimation error. Finally, we consider a training-based scheme for block fading MISO Gaussian broadcast channels. We find the optimum length of the training interval as well as the optimum power used for training in order to maximize the achievable sum-rate

    Information Exchange Limits in Cooperative MIMO Networks

    Full text link
    Concurrent presence of inter-cell and intra-cell interferences constitutes a major impediment to reliable downlink transmission in multi-cell multiuser networks. Harnessing such interferences largely hinges on two levels of information exchange in the network: one from the users to the base-stations (feedback) and the other one among the base-stations (cooperation). We demonstrate that exchanging a finite number of bits across the network, in the form of feedback and cooperation, is adequate for achieving the optimal capacity scaling. We also show that the average level of information exchange is independent of the number of users in the network. This level of information exchange is considerably less than that required by the existing coordination strategies which necessitate exchanging infinite bits across the network for achieving the optimal sum-rate capacity scaling. The results provided rely on a constructive proof.Comment: 35 pages, 5 figur

    Multi-Cell Random Beamforming: Achievable Rate and Degrees of Freedom Region

    Full text link
    Random beamforming (RBF) is a practically favourable transmission scheme for multiuser multi-antenna downlink systems since it requires only partial channel state information (CSI) at the transmitter. Under the conventional single-cell setup, RBF is known to achieve the optimal sum-capacity scaling law as the number of users goes to infinity, thanks to the multiuser diversity enabled transmission scheduling that virtually eliminates the intra-cell interference. In this paper, we extend the study of RBF to a more practical multi-cell downlink system with single-antenna receivers subject to the additional inter-cell interference (ICI). First, we consider the case of finite signal-to-noise ratio (SNR) at each receiver. We derive a closed-form expression of the achievable sum-rate with the multi-cell RBF, based upon which we show an asymptotic sum-rate scaling law as the number of users goes to infinity. Next, we consider the high-SNR regime and for tractable analysis assume that the number of users in each cell scales in a certain order with the per-cell SNR. Under this setup, we characterize the achievable degrees of freedom (DoF) for the single-cell case with RBF. Then we extend the analysis to the multi-cell RBF case by characterizing the DoF region. It is shown that the DoF region characterization provides useful guideline on how to design a cooperative multi-cell RBF system to achieve optimal throughput tradeoffs among different cells. Furthermore, our results reveal that the multi-cell RBF scheme achieves the "interference-free DoF" region upper bound for the multi-cell system, provided that the per-cell number of users has a sufficiently large scaling order with the SNR. Our result thus confirms the optimality of multi-cell RBF in this regime even without the complete CSI at the transmitter, as compared to other full-CSI requiring transmission schemes such as interference alignment.Comment: 28 pages, 6 figures, to appear in IEEE Transactions of Signal Processing. This work was presented in part at IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Kyoto, Japan, March 25-30, 2012. The authors are with the Department of Electrical and Computer Engineering, National University of Singapore (emails: {hieudn, elezhang, elehht}@nus.edu.sg

    Principles of Physical Layer Security in Multiuser Wireless Networks: A Survey

    Full text link
    This paper provides a comprehensive review of the domain of physical layer security in multiuser wireless networks. The essential premise of physical-layer security is to enable the exchange of confidential messages over a wireless medium in the presence of unauthorized eavesdroppers without relying on higher-layer encryption. This can be achieved primarily in two ways: without the need for a secret key by intelligently designing transmit coding strategies, or by exploiting the wireless communication medium to develop secret keys over public channels. The survey begins with an overview of the foundations dating back to the pioneering work of Shannon and Wyner on information-theoretic security. We then describe the evolution of secure transmission strategies from point-to-point channels to multiple-antenna systems, followed by generalizations to multiuser broadcast, multiple-access, interference, and relay networks. Secret-key generation and establishment protocols based on physical layer mechanisms are subsequently covered. Approaches for secrecy based on channel coding design are then examined, along with a description of inter-disciplinary approaches based on game theory and stochastic geometry. The associated problem of physical-layer message authentication is also introduced briefly. The survey concludes with observations on potential research directions in this area.Comment: 23 pages, 10 figures, 303 refs. arXiv admin note: text overlap with arXiv:1303.1609 by other authors. IEEE Communications Surveys and Tutorials, 201

    Performance of Orthogonal Beamforming for SDMA with Limited Feedback

    Full text link
    On the multi-antenna broadcast channel, the spatial degrees of freedom support simultaneous transmission to multiple users. The optimal multiuser transmission, known as dirty paper coding, is not directly realizable. Moreover, close-to-optimal solutions such as Tomlinson-Harashima precoding are sensitive to CSI inaccuracy. This paper considers a more practical design called per user unitary and rate control (PU2RC), which has been proposed for emerging cellular standards. PU2RC supports multiuser simultaneous transmission, enables limited feedback, and is capable of exploiting multiuser diversity. Its key feature is an orthogonal beamforming (or precoding) constraint, where each user selects a beamformer (or precoder) from a codebook of multiple orthonormal bases. In this paper, the asymptotic throughput scaling laws for PU2RC with a large user pool are derived for different regimes of the signal-to-noise ratio (SNR). In the multiuser-interference-limited regime, the throughput of PU2RC is shown to scale logarithmically with the number of users. In the normal SNR and noise-limited regimes, the throughput is found to scale double logarithmically with the number of users and also linearly with the number of antennas at the base station. In addition, numerical results show that PU2RC achieves higher throughput and is more robust against CSI quantization errors than the popular alternative of zero-forcing beamforming if the number of users is sufficiently large.Comment: 27 pages; to appear in IEEE Transactions on Vehicular Technolog
    corecore