128 research outputs found

    On The Linear Behaviour of the Throughput of IEEE 802.11 DCF in Non-Saturated Conditions

    Full text link
    We propose a linear model of the throughput of the IEEE 802.11 Distributed Coordination Function (DCF) protocol at the data link layer in non-saturated traffic conditions. We show that the throughput is a linear function of the packet arrival rate (PAR) λ\lambda with a slope depending on both the number of contending stations and the average payload length. We also derive the interval of validity of the proposed model by showing the presence of a critical λ\lambda, above which the station begins operating in saturated traffic conditions. The analysis is based on the multi-dimensional Markovian state transition model proposed by Liaw \textit{et al.} with the aim of describing the behaviour of the MAC layer in unsaturated traffic conditions. Simulation results closely match the theoretical derivations, confirming the effectiveness of the proposed linear model.Comment: To appear on IEEE Communications Letters, November 200

    On the Behavior of the Distributed Coordination Function of IEEE 802.11 with Multirate Capability under General Transmission Conditions

    Full text link
    The aim of this paper is threefold. First, it presents a multi-dimensional Markovian state transition model characterizing the behavior of the IEEE 802.11 protocol at the Medium Access Control layer which accounts for packet transmission failures due to channel errors modeling both saturated and non-saturated traffic conditions. Second, it provides a throughput analysis of the IEEE 802.11 protocol at the data link layer in both saturated and non-saturated traffic conditions taking into account the impact of both the physical propagation channel and multirate transmission in Rayleigh fading environment. The general traffic model assumed is M/M/1/K. Finally, it shows that the behavior of the throughput in non-saturated traffic conditions is a linear combination of two system parameters; the payload size and the packet rates, λ(s)\lambda^{(s)}, of each contending station. The validity interval of the proposed model is also derived. Simulation results closely match the theoretical derivations, confirming the effectiveness of the proposed models.Comment: Submitted to IEEE Transactions on Wireless Communications, October 21, 200

    Decentralised Learning MACs for Collision-free Access in WLANs

    Get PDF
    By combining the features of CSMA and TDMA, fully decentralised WLAN MAC schemes have recently been proposed that converge to collision-free schedules. In this paper we describe a MAC with optimal long-run throughput that is almost decentralised. We then design two \changed{schemes} that are practically realisable, decentralised approximations of this optimal scheme and operate with different amounts of sensing information. We achieve this by (1) introducing learning algorithms that can substantially speed up convergence to collision free operation; (2) developing a decentralised schedule length adaptation scheme that provides long-run fair (uniform) access to the medium while maintaining collision-free access for arbitrary numbers of stations

    Performance Study of Block ACK and Reverse Direction in IEEE 802.11n Using a Markov Chain Model

    Get PDF
    IEEE 802.11n networks are widely used in home and corporate network environments because they offer high-speed wireless Internet access at relatively low-cost. The 802.11n standard introduced several key features including Block acknowledgement (ACK) and reverse direction (RD) data transmission for enhanced system performance. An in-depth study of 802.11n system capacity for Block ACK mechanisms (both protected and unprotected) and RD data flows is required to assist optimum planning and design of such systems in view of the limited wireless channel capacity. In this paper we study the interdependencies of Block ACK and RD mechanisms using a discrete bi-directional Markov chain model under non-saturated traffic loads. We present a mathematical model to derive throughput, delay, and packet loss probability for both protected and unprotected Block ACKs under varying loads. We validate the model using MATLAB based numerical studies. Results obtained show that the combined effect of protected Block ACK and RD flows has a positive impact on system performance. However, unprotected Block ACK wastes transmission opportunity (TXOP) especially in collisions and therefore degrades the system performance. Our findings reported in this paper provide some insights into the performance of 802.11n with respect to Block ACK and RD methods. This study may help network researchers and engineers in their contribution to the development of next generation wireless LANs such as IEEE 802.11ac
    corecore