17 research outputs found

    Closer to the solutions: iterative linear solvers

    Get PDF
    The solution of dense linear systems received much attention after the second world war, and by the end of the sixties, most of the problems associated with it had been solved. For a long time, Wilkinson's \The Algebraic Eigenvalue Problem" [107], other than the title suggests, became also the standard textbook for the solution of linear systems. When it became clear that partial dierential equations could be solved numerically, to a level of accuracy that was of interest for application areas (such as reservoir engineering, and reactor diusion modeling), there was a strong need for the fast solution of the discretized systems, and iterative methods became popular for these problems

    Improving performance of simplified computational fluid dynamics models via symmetric successive overrelaxation

    Get PDF
    The ability to model fluid flow and heat transfer in process equipment (e.g., shell-and-tube heat exchangers) is often critical. What is more, many different geometric variants may need to be evaluated during the design process. Although this can be done using detailed computational fluid dynamics (CFD) models, the time needed to evaluate a single variant can easily reach tens of hours on powerful computing hardware. Simplified CFD models providing solutions in much shorter time frames may, therefore, be employed instead. Still, even these models can prove to be too slow or not robust enough when used in optimization algorithms. Effort is thus devoted to further improving their performance by applying the symmetric successive overrelaxation (SSOR) preconditioning technique in which, in contrast to, e.g., incomplete lower–upper factorization (ILU), the respective preconditioning matrix can always be constructed. Because the efficacy of SSOR is influenced by the selection of forward and backward relaxation factors, whose direct calculation is prohibitively expensive, their combinations are experimentally investigated using several representative meshes. Performance is then compared in terms of the single-core computational time needed to reach a converged steady-state solution, and recommendations are made regarding relaxation factor combinations generally suitable for the discussed purpose. It is shown that SSOR can be used as a suitable fallback preconditioner for the fast-performing, but numerically sensitive, incomplete lower–upper factorization

    Iterative methods for augmented linear systems

    Get PDF

    CYBER 200 Applications Seminar

    Get PDF
    Applications suited for the CYBER 200 digital computer are discussed. Various areas of application including meteorology, algorithms, fluid dynamics, monte carlo methods, petroleum, electronic circuit simulation, biochemistry, lattice gauge theory, economics and ray tracing are discussed

    Aeronautical Engineering: A continuing bibliography with indexes (supplement 175)

    Get PDF
    This bibliography lists 467 reports, articles and other documents introduced into the NASA scientific and technical information system in May 1984. Topics cover varied aspects of aeronautical engineering, geoscience, physics, astronomy, computer science, and support facilities

    A Parallel Algebraic Multigrid Method for Elliptic Problems with Highly Discontinuous Coefficients

    Get PDF
    The aim of this thesis is the development of a parallel algebraic multigrid method suitable for solving linear systems arising from the discretization of scalar and systems of partial differential equations. Among others it is suitable from conforming finite element methods, finite volume methods, and discontinuous Galerkin methods. The method is especially tailored for the solution of diffusion problems with highly oscillating and discon- tinuous diffusion coefficients. The presented approach uses a new strength of connection measure for guiding the construction of the coarse level matrices. It uses a heuristic greedy aggregation algorithm that allows for aggressive coarsening. It is able to detect weak connections in the matrix graph even for anisotropic diffusion with bi- and trilinear finite elements and thus leads to semi- coarsening even for these cases. At the same time it keeps the stencil size from the finer levels and thus the total operator complexity low even for three dimensional problems. This leads to a very low memory consump- tion of our solver compared with other methods. We develop extensions of the solver to systems of partial differential equation by using special blocking approaches of the unknowns. These blockings are emulated by the underlying matrix and vector data struc- tures. As the blocking is already available to the compiler, it can be exploited to produce automatically more efficient code. For the solution of the linear systems stemming from Discontinuous Galerkin discretizations, we employ the subspace of continuous linear basis function as the space associated with the first coarse level. The further coarsening is done by using the above algorithm. For the method of Baumann and Oden we need to use overlapping Schwarz methods as smoothers to get a convergent method. Their local subspaces are con- structed using our aggregation algorithm on the blocks consisting of all unknowns associated with each element. Finally we present a parallelisation approach for iterative solvers and use it to parallelise our algebraic multigrid method. In our approach the information about the data decomposition is kept apart from the linear al- gebra solvers and data structures. It is used to keep the data stored in the local memory of the process consistent. Using our proposed consistency model, the efficient sequential linear algebra solvers and data structures can be reused without the need to rewrite the actual solver algorithms

    The Third Air Force/NASA Symposium on Recent Advances in Multidisciplinary Analysis and Optimization

    Get PDF
    The third Air Force/NASA Symposium on Recent Advances in Multidisciplinary Analysis and Optimization was held on 24-26 Sept. 1990. Sessions were on the following topics: dynamics and controls; multilevel optimization; sensitivity analysis; aerodynamic design software systems; optimization theory; analysis and design; shape optimization; vehicle components; structural optimization; aeroelasticity; artificial intelligence; multidisciplinary optimization; and composites

    A direct method for the numerical solution of optimization problems with time-periodic PDE constraints

    Get PDF
    In der vorliegenden Dissertation entwickeln wir auf der Basis der Direkten Mehrzielmethode eine neue numerische Methode für Optimalsteuerungsprobleme (OCPs) mit zeitperiodischen partiellen Differentialgleichungen (PDEs). Die vorgeschlagene Methode zeichnet sich durch asymptotisch optimale Skalierung des numerischen Aufwandes in der Zahl der örtlichen Diskretisierungspunkte aus. Sie besteht aus einem Linearen Iterativen Splitting Ansatz (LISA) innerhalb einer Newton-Typ Iteration zusammen mit einer Globalisierungsstrategie, die auf natürlichen Niveaufunktionen basiert. Wir untersuchen die LISA-Newton Methode im Rahmen von Bocks kappa-Theorie und entwickeln zuverlässige a-posteriori kappa-Schätzer. Im Folgenden erweitern wir die LISA-Newton Methode auf den Fall von inexakter Sequentieller Quadratischer Programmierung (SQP) für ungleichungsbeschränke Probleme und untersuchen das lokale Konvergenzverhalten. Zusätzlich entwickeln wir klassische und Zweigitter Newton-Picard Vorkonditionierer für LISA und beweisen gitterunabhängige Konvergenz der klassischen Variante auf einem Modellproblem. Anhand numerischer Ergebnisse können wir belegen, dass im Vergleich zur klassichen Variante die Zweigittervariante sogar noch effizienter ist für typische Anwendungsprobleme. Des Weiteren entwickeln wir eine Zweigitterapproximation der Lagrange-Hessematrix, welche gut in den Rahmen des Zweigitter Newton-Picard Ansatzes passt und die im Vergleich zur exakten Hessematrix zu einer Laufzeitreduktion von 68% auf einem nichtlinearen Benchmarkproblem führt. Wir zeigen weiterhin, dass die Qualität des Feingitters die Genauigkeit der Lösung bestimmt, während die Qualität des Grobgitters die asymptotische lineare Konvergenzrate, d.h., das Bocksche kappa, festlegt. Zuverlässige kappa-Schätzer ermöglichen die automatische Steuerung der Grobgitterverfeinerung für schnelle Konvergenz. Für die Lösung der auftretenden, großen Probleme der Quadratischen Programmierung (QPs) wählen wir einen strukturausnutzenden zweistufigen Ansatz. In der ersten Stufe nutzen wir die durch den Mehrzielansatz und die Newton-Picard Vorkonditionierer bedingten Strukturen aus, um die großen QPs auf äquivalente QPs zu reduzieren, deren Größe von der Zahl der örtlichen Diskretisierungspunkte unabhängig ist. Für die zweite Stufe entwickeln wir Erweiterungen für eine Parametrische Aktive Mengen Methode (PASM), die zu einem zuverlässigen und effizienten Löser für die resultierenden, möglicherweise nichtkonvexen QPs führen. Weiterhin konstruieren wir drei anschauliche, contra-intuitive Probleme, die aufzeigen, dass die Konvergenz einer one-shot one-step Optimierungsmethode weder notwendig noch hinreichend für die Konvergenz der entsprechenden Methode für das Vorwärtsproblem ist. Unsere Analyse von drei Regularisierungsansätzen zeigt, dass de-facto Verlust von Konvergenz selbst mit diesen Ansätzen nicht verhindert werden kann. Des Weiteren haben wir die vorgestellten Methoden in einem Computercode mit Namen MUSCOP implementiert, der automatische Ableitungserzeugung erster und zweiter Ordnung von Modellfunktionen und Lösungen der dynamischen Systeme, Parallelisierung auf der Mehrzielstruktur und ein Hybrid Language Programming Paradigma zur Verfügung stellt, um die benötigte Zeit für das Aufstellen und Lösen neuer Anwendungsprobleme zu minimieren. Wir demonstrieren die Anwendbarkeit, Zuverlässigkeit und Effektivität von MUSCOP und damit der vorgeschlagenen numerischen Methoden anhand einer Reihe von PDE OCPs von steigender Schwierigkeit, angefangen bei linearen akademischen Problemen über hochgradig nichtlineare akademische Probleme der mathematischen Biologie bis hin zu einem hochgradig nichtlinearen Anwendungsproblem der chemischen Verfahrenstechnik im Bereich der präparativen Chromatographie auf Basis realer Daten: Dem Simulated Moving Bed (SMB) Prozess
    corecore