11,059 research outputs found

    On powers of interval graphs and their orders

    Full text link
    It was proved by Raychaudhuri in 1987 that if a graph power Gk1G^{k-1} is an interval graph, then so is the next power GkG^k. This result was extended to mm-trapezoid graphs by Flotow in 1995. We extend the statement for interval graphs by showing that any interval representation of Gk1G^{k-1} can be extended to an interval representation of GkG^k that induces the same left endpoint and right endpoint orders. The same holds for unit interval graphs. We also show that a similar fact does not hold for trapezoid graphs.Comment: 4 pages, 1 figure. It has come to our attention that Theorem 1, the main result of this note, follows from earlier results of [G. Agnarsson, P. Damaschke and M. M. Halldorsson. Powers of geometric intersection graphs and dispersion algorithms. Discrete Applied Mathematics 132(1-3):3-16, 2003]. This version is updated accordingl

    Total Curvature of Graphs after Milnor and Euler

    Full text link
    We define a new notion of total curvature, called net total curvature, for finite graphs embedded in Rn, and investigate its properties. Two guiding principles are given by Milnor's way of measuring the local crookedness of a Jordan curve via a Crofton-type formula, and by considering the double cover of a given graph as an Eulerian circuit. The strength of combining these ideas in defining the curvature functional is (1) it allows us to interpret the singular/non-eulidean behavior at the vertices of the graph as a superposition of vertices of a 1-dimensional manifold, and thus (2) one can compute the total curvature for a wide range of graphs by contrasting local and global properties of the graph utilizing the integral geometric representation of the curvature. A collection of results on upper/lower bounds of the total curvature on isotopy/homeomorphism classes of embeddings is presented, which in turn demonstrates the effectiveness of net total curvature as a new functional measuring complexity of spatial graphs in differential-geometric terms.Comment: Most of the results contained in "Total curvature and isotopy of graphs in R3R^3."(arXiv:0806.0406) have been incorporated into the current articl

    OBDD-Based Representation of Interval Graphs

    Full text link
    A graph G=(V,E)G = (V,E) can be described by the characteristic function of the edge set χE\chi_E which maps a pair of binary encoded nodes to 1 iff the nodes are adjacent. Using \emph{Ordered Binary Decision Diagrams} (OBDDs) to store χE\chi_E can lead to a (hopefully) compact representation. Given the OBDD as an input, symbolic/implicit OBDD-based graph algorithms can solve optimization problems by mainly using functional operations, e.g. quantification or binary synthesis. While the OBDD representation size can not be small in general, it can be provable small for special graph classes and then also lead to fast algorithms. In this paper, we show that the OBDD size of unit interval graphs is O( V /log V )O(\ | V \ | /\log \ | V \ |) and the OBDD size of interval graphs is $O(\ | V \ | \log \ | V \ |)whichbothimproveaknownresultfromNunkesserandWoelfel(2009).Furthermore,wecanshowthatusingourvariableorderandnodelabelingforintervalgraphstheworstcaseOBDDsizeis which both improve a known result from Nunkesser and Woelfel (2009). Furthermore, we can show that using our variable order and node labeling for interval graphs the worst-case OBDD size is \Omega(\ | V \ | \log \ | V \ |).Weusethestructureoftheadjacencymatricestoprovethesebounds.Thismethodmaybeofindependentinterestandcanbeappliedtoothergraphclasses.Wealsodevelopamaximummatchingalgorithmonunitintervalgraphsusing. We use the structure of the adjacency matrices to prove these bounds. This method may be of independent interest and can be applied to other graph classes. We also develop a maximum matching algorithm on unit interval graphs using O(\log \ | V \ |)operationsandacoloringalgorithmforunitandgeneralintervalsgraphsusing operations and a coloring algorithm for unit and general intervals graphs using O(\log^2 \ | V \ |)$ operations and evaluate the algorithms empirically.Comment: 29 pages, accepted for 39th International Workshop on Graph-Theoretic Concepts 201
    corecore