59,118 research outputs found

    Weak commutation relations of unbounded operators and applications

    Full text link
    Four possible definitions of the commutation relation [S,T]=\Id of two closable unbounded operators S,TS,T are compared. The {\em weak} sense of this commutator is given in terms of the inner product of the Hilbert space \H where the operators act. Some consequences on the existence of eigenvectors of two number-like operators are derived and the partial O*-algebra generated by S,TS,T is studied. Some applications are also considered.Comment: In press in Journal of Mathematical Physic

    On the Hardy-Littlewood-P\'olya and Taikov type inequalities for multiple operators in Hilbert spaces

    Full text link
    We present unified approach to obtain sharp mean-squared and multiplicative inequalities of Hardy-Littlewood-Poly\'a and Taikov types for multiple closed operators acting on Hilbert space. We apply our results to establish new sharp inequalities for the norms of powers of the Laplace-Beltrami operators on compact Riemmanian manifolds and derive the well-known Taikov and Hardy-Littlewood-Poly\'a inequalities for functions defined on dd-dimensional space in the limit case. Other applications include the best approximation of unbounded operators by linear bounded ones and the best approximation of one class by elements of other class. In addition, we establish sharp Solyar-type inequalities for unbounded closed operators with closed range

    Analysis of unbounded operators and random motion

    Full text link
    We study infinite weighted graphs with view to \textquotedblleft limits at infinity,\textquotedblright or boundaries at infinity. Examples of such weighted graphs arise in infinite (in practice, that means \textquotedblleft very\textquotedblright large) networks of resistors, or in statistical mechanics models for classical or quantum systems. But more generally our analysis includes reproducing kernel Hilbert spaces and associated operators on them. If XX is some infinite set of vertices or nodes, in applications the essential ingredient going into the definition is a reproducing kernel Hilbert space; it measures the differences of functions on XX evaluated on pairs of points in XX. And the Hilbert norm-squared in H(X)\mathcal{H}(X) will represent a suitable measure of energy. Associated unbounded operators will define a notion or dissipation, it can be a graph Laplacian, or a more abstract unbounded Hermitian operator defined from the reproducing kernel Hilbert space under study. We prove that there are two closed subspaces in reproducing kernel Hilbert space H(X)\mathcal{H}(X) which measure quantitative notions of limits at infinity in XX, one generalizes finite-energy harmonic functions in H(X)\mathcal{H}(X), and the other a deficiency index of a natural operator in H(X)\mathcal{H}(X) associated directly with the diffusion. We establish these results in the abstract, and we offer examples and applications. Our results are related to, but different from, potential theoretic notions of \textquotedblleft boundaries\textquotedblright in more standard random walk models. Comparisons are made.Comment: 38 pages, 4 tables, 3 figure
    corecore