370 research outputs found

    Unavoidable induced subgraphs in large graphs with no homogeneous sets

    Full text link
    A homogeneous set of an nn-vertex graph is a set XX of vertices (2â‰€âˆŁXâˆŁâ‰€n−12\le |X|\le n-1) such that every vertex not in XX is either complete or anticomplete to XX. A graph is called prime if it has no homogeneous set. A chain of length tt is a sequence of t+1t+1 vertices such that for every vertex in the sequence except the first one, its immediate predecessor is its unique neighbor or its unique non-neighbor among all of its predecessors. We prove that for all nn, there exists NN such that every prime graph with at least NN vertices contains one of the following graphs or their complements as an induced subgraph: (1) the graph obtained from K1,nK_{1,n} by subdividing every edge once, (2) the line graph of K2,nK_{2,n}, (3) the line graph of the graph in (1), (4) the half-graph of height nn, (5) a prime graph induced by a chain of length nn, (6) two particular graphs obtained from the half-graph of height nn by making one side a clique and adding one vertex.Comment: 13 pages, 3 figure

    Deciding whether there are infinitely many prime graphs with forbidden induced subgraphs

    Get PDF
    A homogeneous set of a graph G is a set X of vertices such that 2≀|X|V(G)| and no vertex in V(G)−X has both a neighbor and a non-neighbor in X. A graph is prime if it has no homogeneous set. We present an algorithm to decide whether a class of graphs given by a finite set of forbidden induced subgraphs contains infinitely many non-isomorphic prime graphs

    Well-quasi-ordering and finite distinguishing number

    Get PDF
    Balogh, Bollobás and Weinreich showed that a parameter that has since been termed the distinguishing number can be used to identify a jump in the possible speeds of hereditary classes of graphs at the sequence of Bell numbers. We prove that every hereditary class that lies above the Bell numbers and has finite distinguishing number contains a boundary class for well‐quasi‐ordering. This means that any such hereditary class which in addition is defined by finitely many minimal forbidden induced subgraphs must contain an infinite antichain. As all hereditary classes below the Bell numbers are well‐quasi‐ordered, our results complete the answer to the question of well‐quasi‐ordering for hereditary classes with finite distinguishing number. We also show that the decision procedure of Atminas, Collins, Foniok and Lozin to decide the Bell number (and which now also decides well‐quasi‐ordering for classes of finite distinguishing number) has runtime bounded by an explicit (quadruple exponential) function of the order of the largest minimal forbidden induced subgraph of the class
    • 

    corecore