2,090 research outputs found

    Statistical mechanics of the vertex-cover problem

    Full text link
    We review recent progress in the study of the vertex-cover problem (VC). VC belongs to the class of NP-complete graph theoretical problems, which plays a central role in theoretical computer science. On ensembles of random graphs, VC exhibits an coverable-uncoverable phase transition. Very close to this transition, depending on the solution algorithm, easy-hard transitions in the typical running time of the algorithms occur. We explain a statistical mechanics approach, which works by mapping VC to a hard-core lattice gas, and then applying techniques like the replica trick or the cavity approach. Using these methods, the phase diagram of VC could be obtained exactly for connectivities c<ec<e, where VC is replica symmetric. Recently, this result could be confirmed using traditional mathematical techniques. For c>ec>e, the solution of VC exhibits full replica symmetry breaking. The statistical mechanics approach can also be used to study analytically the typical running time of simple complete and incomplete algorithms for VC. Finally, we describe recent results for VC when studied on other ensembles of finite- and infinite-dimensional graphs.Comment: review article, 26 pages, 9 figures, to appear in J. Phys. A: Math. Ge

    Quasiperiodic graphs at the onset of chaos

    Full text link
    We examine the connectivity fluctuations across networks obtained when the horizontal visibility (HV) algorithm is used on trajectories generated by nonlinear circle maps at the quasiperiodic transition to chaos. The resultant HV graph is highly anomalous as the degrees fluctuate at all scales with amplitude that increases with the size of the network. We determine families of Pesin-like identities between entropy growth rates and generalized graph-theoretical Lyapunov exponents. An irrational winding number with pure periodic continued fraction characterizes each family. We illustrate our results for the so-called golden, silver and bronze numbers.Comment: arXiv admin note: text overlap with arXiv:1205.190

    Dynamics of heuristic optimization algorithms on random graphs

    Full text link
    In this paper, the dynamics of heuristic algorithms for constructing small vertex covers (or independent sets) of finite-connectivity random graphs is analysed. In every algorithmic step, a vertex is chosen with respect to its vertex degree. This vertex, and some environment of it, is covered and removed from the graph. This graph reduction process can be described as a Markovian dynamics in the space of random graphs of arbitrary degree distribution. We discuss some solvable cases, including algorithms already analysed using different techniques, and develop approximation schemes for more complicated cases. The approximations are corroborated by numerical simulations.Comment: 19 pages, 3 figures, version to app. in EPJ

    Threshold values, stability analysis and high-q asymptotics for the coloring problem on random graphs

    Full text link
    We consider the problem of coloring Erdos-Renyi and regular random graphs of finite connectivity using q colors. It has been studied so far using the cavity approach within the so-called one-step replica symmetry breaking (1RSB) ansatz. We derive a general criterion for the validity of this ansatz and, applying it to the ground state, we provide evidence that the 1RSB solution gives exact threshold values c_q for the q-COL/UNCOL phase transition. We also study the asymptotic thresholds for q >> 1 finding c_q = 2qlog(q)-log(q)-1+o(1) in perfect agreement with rigorous mathematical bounds, as well as the nature of excited states, and give a global phase diagram of the problem.Comment: 23 pages, 10 figures. Replaced with accepted versio

    Communication and correlation among communities

    Full text link
    Given a network and a partition in communities, we consider the issues "how communities influence each other" and "when two given communities do communicate". Specifically, we address these questions in the context of small-world networks, where an arbitrary quenched graph is given and long range connections are randomly added. We prove that, among the communities, a superposition principle applies and gives rise to a natural generalization of the effective field theory already presented in [Phys. Rev. E 78, 031102] (n=1), which here (n>1) consists in a sort of effective TAP (Thouless, Anderson and Palmer) equations in which each community plays the role of a microscopic spin. The relative susceptibilities derived from these equations calculated at finite or zero temperature, where the method provides an effective percolation theory, give us the answers to the above issues. Unlike the case n=1, asymmetries among the communities may lead, via the TAP-like structure of the equations, to many metastable states whose number, in the case of negative short-cuts among the communities, may grow exponentially fast with n. As examples we consider the n Viana-Bray communities model and the n one-dimensional small-world communities model. Despite being the simplest ones, the relevance of these models in network theory, as e.g. in social networks, is crucial and no analytic solution were known until now. Connections between percolation and the fractal dimension of a network are also discussed. Finally, as an inverse problem, we show how, from the relative susceptibilities, a natural and efficient method to detect the community structure of a generic network arises. For a short presentation of the main result see arXiv:0812.0608.Comment: 29 pages, 5 figure

    Potts q-color field theory and scaling random cluster model

    Full text link
    We study structural properties of the q-color Potts field theory which, for real values of q, describes the scaling limit of the random cluster model. We show that the number of independent n-point Potts spin correlators coincides with that of independent n-point cluster connectivities and is given by generalized Bell numbers. Only a subset of these spin correlators enters the determination of the Potts magnetic properties for q integer. The structure of the operator product expansion of the spin fields for generic q is also identified. For the two-dimensional case, we analyze the duality relation between spin and kink field correlators, both for the bulk and boundary cases, obtaining in particular a sum rule for the kink-kink elastic scattering amplitudes.Comment: 27 pages; 6 figures. Published version, some comments and references adde
    • …
    corecore