1,014 research outputs found

    Preimage problems for deterministic finite automata

    Full text link
    Given a subset of states SS of a deterministic finite automaton and a word ww, the preimage is the subset of all states mapped to a state in SS by the action of ww. We study three natural problems concerning words giving certain preimages. The first problem is whether, for a given subset, there exists a word \emph{extending} the subset (giving a larger preimage). The second problem is whether there exists a \emph{totally extending} word (giving the whole set of states as a preimage)---equivalently, whether there exists an \emph{avoiding} word for the complementary subset. The third problem is whether there exists a \emph{resizing} word. We also consider variants where the length of the word is upper bounded, where the size of the given subset is restricted, and where the automaton is strongly connected, synchronizing, or binary. We conclude with a summary of the complexities in all combinations of the cases

    Limit Synchronization in Markov Decision Processes

    Full text link
    Markov decision processes (MDP) are finite-state systems with both strategic and probabilistic choices. After fixing a strategy, an MDP produces a sequence of probability distributions over states. The sequence is eventually synchronizing if the probability mass accumulates in a single state, possibly in the limit. Precisely, for 0 <= p <= 1 the sequence is p-synchronizing if a probability distribution in the sequence assigns probability at least p to some state, and we distinguish three synchronization modes: (i) sure winning if there exists a strategy that produces a 1-synchronizing sequence; (ii) almost-sure winning if there exists a strategy that produces a sequence that is, for all epsilon > 0, a (1-epsilon)-synchronizing sequence; (iii) limit-sure winning if for all epsilon > 0, there exists a strategy that produces a (1-epsilon)-synchronizing sequence. We consider the problem of deciding whether an MDP is sure, almost-sure, limit-sure winning, and we establish the decidability and optimal complexity for all modes, as well as the memory requirements for winning strategies. Our main contributions are as follows: (a) for each winning modes we present characterizations that give a PSPACE complexity for the decision problems, and we establish matching PSPACE lower bounds; (b) we show that for sure winning strategies, exponential memory is sufficient and may be necessary, and that in general infinite memory is necessary for almost-sure winning, and unbounded memory is necessary for limit-sure winning; (c) along with our results, we establish new complexity results for alternating finite automata over a one-letter alphabet

    Synchronization Problems in Automata without Non-trivial Cycles

    Full text link
    We study the computational complexity of various problems related to synchronization of weakly acyclic automata, a subclass of widely studied aperiodic automata. We provide upper and lower bounds on the length of a shortest word synchronizing a weakly acyclic automaton or, more generally, a subset of its states, and show that the problem of approximating this length is hard. We investigate the complexity of finding a synchronizing set of states of maximum size. We also show inapproximability of the problem of computing the rank of a subset of states in a binary weakly acyclic automaton and prove that several problems related to recognizing a synchronizing subset of states in such automata are NP-complete.Comment: Extended and corrected version, including arXiv:1608.00889. Conference version was published at CIAA 2017, LNCS vol. 10329, pages 188-200, 201

    Strong inapproximability of the shortest reset word

    Full text link
    The \v{C}ern\'y conjecture states that every nn-state synchronizing automaton has a reset word of length at most (n1)2(n-1)^2. We study the hardness of finding short reset words. It is known that the exact version of the problem, i.e., finding the shortest reset word, is NP-hard and coNP-hard, and complete for the DP class, and that approximating the length of the shortest reset word within a factor of O(logn)O(\log n) is NP-hard [Gerbush and Heeringa, CIAA'10], even for the binary alphabet [Berlinkov, DLT'13]. We significantly improve on these results by showing that, for every ϵ>0\epsilon>0, it is NP-hard to approximate the length of the shortest reset word within a factor of n1ϵn^{1-\epsilon}. This is essentially tight since a simple O(n)O(n)-approximation algorithm exists.Comment: extended abstract to appear in MFCS 201

    On the Number of Synchronizing Colorings of Digraphs

    Full text link
    We deal with kk-out-regular directed multigraphs with loops (called simply \emph{digraphs}). The edges of such a digraph can be colored by elements of some fixed kk-element set in such a way that outgoing edges of every vertex have different colors. Such a coloring corresponds naturally to an automaton. The road coloring theorem states that every primitive digraph has a synchronizing coloring. In the present paper we study how many synchronizing colorings can exist for a digraph with nn vertices. We performed an extensive experimental investigation of digraphs with small number of vertices. This was done by using our dedicated algorithm exhaustively enumerating all small digraphs. We also present a series of digraphs whose fraction of synchronizing colorings is equal to 11/kd1-1/k^d, for every d1d \ge 1 and the number of vertices large enough. On the basis of our results we state several conjectures and open problems. In particular, we conjecture that 11/k1-1/k is the smallest possible fraction of synchronizing colorings, except for a single exceptional example on 6 vertices for k=2k=2.Comment: CIAA 2015. The final publication is available at http://link.springer.com/chapter/10.1007/978-3-319-22360-5_1

    On Primitivity of Sets of Matrices

    Full text link
    A nonnegative matrix AA is called primitive if AkA^k is positive for some integer k>0k>0. A generalization of this concept to finite sets of matrices is as follows: a set of matrices M={A1,A2,,Am}\mathcal M = \{A_1, A_2, \ldots, A_m \} is primitive if Ai1Ai2AikA_{i_1} A_{i_2} \ldots A_{i_k} is positive for some indices i1,i2,...,iki_1, i_2, ..., i_k. The concept of primitive sets of matrices comes up in a number of problems within the study of discrete-time switched systems. In this paper, we analyze the computational complexity of deciding if a given set of matrices is primitive and we derive bounds on the length of the shortest positive product. We show that while primitivity is algorithmically decidable, unless P=NPP=NP it is not possible to decide primitivity of a matrix set in polynomial time. Moreover, we show that the length of the shortest positive sequence can be superpolynomial in the dimension of the matrices. On the other hand, defining P{\mathcal P} to be the set of matrices with no zero rows or columns, we give a simple combinatorial proof of a previously-known characterization of primitivity for matrices in P{\mathcal P} which can be tested in polynomial time. This latter observation is related to the well-known 1964 conjecture of Cerny on synchronizing automata; in fact, any bound on the minimal length of a synchronizing word for synchronizing automata immediately translates into a bound on the length of the shortest positive product of a primitive set of matrices in P{\mathcal P}. In particular, any primitive set of n×nn \times n matrices in P{\mathcal P} has a positive product of length O(n3)O(n^3)
    corecore