67,018 research outputs found

    A tree-decomposed transfer matrix for computing exact Potts model partition functions for arbitrary graphs, with applications to planar graph colourings

    Get PDF
    Combining tree decomposition and transfer matrix techniques provides a very general algorithm for computing exact partition functions of statistical models defined on arbitrary graphs. The algorithm is particularly efficient in the case of planar graphs. We illustrate it by computing the Potts model partition functions and chromatic polynomials (the number of proper vertex colourings using Q colours) for large samples of random planar graphs with up to N=100 vertices. In the latter case, our algorithm yields a sub-exponential average running time of ~ exp(1.516 sqrt(N)), a substantial improvement over the exponential running time ~ exp(0.245 N) provided by the hitherto best known algorithm. We study the statistics of chromatic roots of random planar graphs in some detail, comparing the findings with results for finite pieces of a regular lattice.Comment: 5 pages, 3 figures. Version 2 has been substantially expanded. Version 3 shows that the worst-case running time is sub-exponential in the number of vertice

    Computing Graph Roots Without Short Cycles

    Get PDF
    Graph G is the square of graph H if two vertices x, y have an edge in G if and only if x, y are of distance at most two in H. Given H it is easy to compute its square H2, however Motwani and Sudan proved that it is NP-complete to determine if a given graph G is the square of some graph H (of girth 3). In this paper we consider the characterization and recognition problems of graphs that are squares of graphs of small girth, i.e. to determine if G = H2 for some graph H of small girth. The main results are the following. - There is a graph theoretical characterization for graphs that are squares of some graph of girth at least 7. A corollary is that if a graph G has a square root H of girth at least 7 then H is unique up to isomorphism. - There is a polynomial time algorithm to recognize if G = H2 for some graph H of girth at least 6. - It is NP-complete to recognize if G = H2 for some graph H of girth 4. These results almost provide a dichotomy theorem for the complexity of the recognition problem in terms of girth of the square roots. The algorithmic and graph theoretical results generalize previous results on tree square roots, and provide polynomial time algorithms to compute a graph square root of small girth if it exists. Some open questions and conjectures will also be discussed

    Characterizing and recognizing exact-distance squares of graphs

    Full text link
    For a graph G=(V,E)G=(V,E), its exact-distance square, G[♯2]G^{[\sharp 2]}, is the graph with vertex set VV and with an edge between vertices xx and yy if and only if xx and yy have distance (exactly) 22 in GG. The graph GG is an exact-distance square root of G[♯2]G^{[\sharp 2]}. We give a characterization of graphs having an exact-distance square root, our characterization easily leading to a polynomial-time recognition algorithm. We show that it is NP-complete to recognize graphs with a bipartite exact-distance square root. These two results strongly contrast known results on (usual) graph squares. We then characterize graphs having a tree as an exact-distance square root, and from this obtain a polynomial-time recognition algorithm for these graphs. Finally, we show that, unlike for usual square roots, a graph might have (arbitrarily many) non-isomorphic exact-distance square roots which are trees.Comment: 15 pages, 6 figure

    Computing Optimal Leaf Roots of Chordal Cographs in Linear Time

    Full text link
    A graph G is a k-leaf power, for an integer k >= 2, if there is a tree T with leaf set V(G) such that, for all vertices x, y in V(G), the edge xy exists in G if and only if the distance between x and y in T is at most k. Such a tree T is called a k-leaf root of G. The computational problem of constructing a k-leaf root for a given graph G and an integer k, if any, is motivated by the challenge from computational biology to reconstruct phylogenetic trees. For fixed k, Lafond [SODA 2022] recently solved this problem in polynomial time. In this paper, we propose to study optimal leaf roots of graphs G, that is, the k-leaf roots of G with minimum k value. Thus, all k'-leaf roots of G satisfy k <= k'. In terms of computational biology, seeking optimal leaf roots is more justified as they yield more probable phylogenetic trees. Lafond's result does not imply polynomial-time computability of optimal leaf roots, because, even for optimal k-leaf roots, k may (exponentially) depend on the size of G. This paper presents a linear-time construction of optimal leaf roots for chordal cographs (also known as trivially perfect graphs). Additionally, it highlights the importance of the parity of the parameter k and provides a deeper insight into the differences between optimal k-leaf roots of even versus odd k. Keywords: k-leaf power, k-leaf root, optimal k-leaf root, trivially perfect leaf power, chordal cographComment: 22 pages, 2 figures, full version of the FCT 2023 pape

    Maximal Entropy Random Walk: solvable cases of dynamics

    Get PDF
    We focus on the study of dynamics of two kinds of random walk: generic random walk (GRW) and maximal entropy random walk (MERW) on two model networks: Cayley trees and ladder graphs. The stationary probability distribution for MERW is given by the squared components of the eigenvector associated with the largest eigenvalue \lambda_0 of the adjacency matrix of a graph, while the dynamics of the probability distribution approaching to the stationary state depends on the second largest eigenvalue \lambda_1. Firstly, we give analytic solutions for Cayley trees with arbitrary branching number, root degree, and number of generations. We determine three regimes of a tree structure that result in different statics and dynamics of MERW, which are due to strongly, critically, and weakly branched roots. We show how the relaxation times, generically shorter for MERW than for GRW, scale with the graph size. Secondly, we give numerical results for ladder graphs with symmetric defects. MERW shows a clear exponential growth of the relaxation time with the size of defective regions, which indicates trapping of a particle within highly entropic intact region and its escaping that resembles quantum tunneling through a potential barrier. GRW shows standard diffusive dependence irrespective of the defects.Comment: 13 pages, 6 figures, 24th Marian Smoluchowski Symposium on Statistical Physics (Zakopane, Poland, September 17-22, 2011
    • …
    corecore