19,104 research outputs found

    Travelling waves in a nonlinear degenerate diffusion model for bacterial pattern formation

    Get PDF
    We study a reaction diffusion model recently proposed in [5] to describe the spatiotemporal evolution of the bacterium Bacillus subtilis on agar plates containing nutrient. An interesting mathematical feature of the model, which is a coupled pair of partial differential equations, is that the bacterial density satisfies a degenerate nonlinear diffusion equation. It was shown numerically that this model can exhibit quasi-one-dimensional constant speed travelling wave solutions. We present an analytic study of the existence and uniqueness problem for constant speed travelling wave solutions. We find that such solutions exist only for speeds greater than some threshold speed giving minimum speed waves which have a sharp profile. For speeds greater than this minimum speed the waves are smooth. We also characterise the dependence of the wave profile on the decay of the front of the initial perturbation in bacterial density. An investigation of the partial differential equation problem establishes,via a global existence and uniqueness argument, that these waves are the only long time solutions supported by the problem. Numerical solutions of the partial differential equation problem are presented and they confirm the results of the analysis

    Seven common errors in finding exact solutions of nonlinear differential equations

    Full text link
    We analyze the common errors of the recent papers in which the solitary wave solutions of nonlinear differential equations are presented. Seven common errors are formulated and classified. These errors are illustrated by using multiple examples of the common errors from the recent publications. We show that many popular methods in finding of the exact solutions are equivalent each other. We demonstrate that some authors look for the solitary wave solutions of nonlinear ordinary differential equations and do not take into account the well - known general solutions of these equations. We illustrate several cases when authors present some functions for describing solutions but do not use arbitrary constants. As this fact takes place the redundant solutions of differential equations are found. A few examples of incorrect solutions by some authors are presented. Several other errors in finding the exact solutions of nonlinear differential equations are also discussed.Comment: 42 page

    Observations on the basic (Gā€²/G)-expansion method for finding solutions to nonlinear evolution equations

    Get PDF
    The extended tanh-function expansion method for finding solutions to nonlinear evolution equations delivers solutions in a straightforward manner and in a neat and helpful form. On the other hand, the more recent but less efficient (Gā€²/G)-expansion method delivers solutions in a rather cumbersome form. It is shown that these solutions are merely disguised forms of the solutions given by the earlier method so that the two methods are entirely equivalent. An unfortunate consequence of this observation is that, in many papers in which the (Gā€²/G)-expansion method has been used, claims that 'new' solutions have been derived are often erroneous; the so-called 'new' solutions are merely disguised versions of previously known solutions

    Comment on ā€œApplication of (Gā€²/G)-expansion method to travelling-wave solutions of three nonlinear evolution equation" [Comput Fluids 2010;39;1957-63]

    Get PDF
    In a recent paper [Abazari R. Application of (Gā€² G )-expansion method to travelling wave solutions of three nonlinear evolution equation. Computers & Fluids 2010;39:1957ā€“1963], the (Gā€²/G)-expansion method was used to find travelling-wave solutions to three nonlinear evolution equations that arise in the mathematical modelling of fluids. The author claimed that the method delivers more general forms of solution than other methods. In this note we point out that not only is this claim false but that the delivered solutions are cumbersome and misleading. The extended tanh-function expansion method, for example, is not only entirely equivalent to the (Gā€²/G)-expansion method but is more efficient and user-friendly, and delivers solutions in a compact and elegant form

    Falling liquid films with blowing and suction

    Full text link
    Flow of a thin viscous film down a flat inclined plane becomes unstable to long wave interfacial fluctuations when the Reynolds number based on the mean film thickness becomes larger than a critical value (this value decreases as the angle of inclination with the horizontal increases, and in particular becomes zero when the plate is vertical). Control of these interfacial instabilities is relevant to a wide range of industrial applications including coating processes and heat or mass transfer systems. This study considers the effect of blowing and suction through the substrate in order to construct from first principles physically realistic models that can be used for detailed passive and active control studies of direct relevance to possible experiments. Two different long-wave, thin-film equations are derived to describe this system; these include the imposed blowing/suction as well as inertia, surface tension, gravity and viscosity. The case of spatially periodic blowing and suction is considered in detail and the bifurcation structure of forced steady states is explored numerically to predict that steady states cease to exist for sufficiently large suction speeds since the film locally thins to zero thickness giving way to dry patches on the substrate. The linear stability of the resulting nonuniform steady states is investigated for perturbations of arbitrary wavelengths, and any instabilities are followed into the fully nonlinear regime using time-dependent computations. The case of small amplitude blowing/suction is studied analytically both for steady states and their stability. Finally, the transition between travelling waves and non-uniform steady states is explored as the suction amplitude increases

    Observations on the tanh-coth expansion method for finding solutions to nonlinear evolution equations

    Get PDF
    The 'tanh-coth expansion method' for finding solitary travelling-wave solutions to nonlinear evolution equations has been used extensively in the literature. It is a natural extension to the basic tanh-function expansion method which was developed in the 1990s. It usually delivers three types of solution, namely a tanh-function expansion, a coth-function expansion, and a tanh-coth expansion. It is known that, for every tanh-function expansion solution, there is a corresponding coth-function expansion solution. It is shown that there is a tanh-coth expansion solution that is merely a disguised version of the coth solution. In many papers, such tanh-coth solutions are erroneously claimed to be 'new'. However, other tanh-coth solutions may be delivered that are genuinely new in the sense that they would not be delivered via the basic tanh-function method. Similar remarks apply to tan, cot and tan-cot expansion solutions

    A note on "new travelling wave solutions to the Ostrovsky equation"

    Get PDF
    In a recent paper by Yaşar [E. Yaşar, New travelling wave solutions to the Ostrovsky equation, Appl. Math. Comput. 216 (2010), 3191-3194], 'new' travelling-wave solutions to the transformed reduced Ostrovsky equation are presented. In this note it is shown that some of these solutions are disguised versions of known solutions
    • ā€¦
    corecore