31,782 research outputs found

    On the algorithmic complexity of twelve covering and independence parameters of graphs

    Get PDF
    The definitions of four previously studied parameters related to total coverings and total matchings of graphs can be restricted, thereby obtaining eight parameters related to covering and independence, each of which has been studied previously in some form. Here we survey briefly results concerning total coverings and total matchings of graphs, and consider the aforementioned 12 covering and independence parameters with regard to algorithmic complexity. We survey briefly known results for several graph classes, and obtain new NP-completeness results for the minimum total cover and maximum minimal total cover problems in planar graphs, the minimum maximal total matching problem in bipartite and chordal graphs, and the minimum independent dominating set problem in planar cubic graphs

    On balanced planar graphs, following W. Thurston

    Full text link
    Let f:S2→S2f:S^2\to S^2 be an orientation-preserving branched covering map of degree d≥2d\geq 2, and let Σ\Sigma be an oriented Jordan curve passing through the critical values of ff. Then Γ:=f−1(Σ)\Gamma:=f^{-1}(\Sigma) is an oriented graph on the sphere. In a group email discussion in Fall 2010, W. Thurston introduced balanced planar graphs and showed that they combinatorially characterize all such Γ\Gamma, where ff has 2d−22d-2 distinct critical values. We give a detailed account of this discussion, along with some examples and an appendix about Hurwitz numbers.Comment: 17 page

    Some colouring problems for Paley graphs

    Get PDF
    The Paley graph Pq, where q≡1(mod4) is a prime power, is the graph with vertices the elements of the finite field Fq and an edge between x and y if and only if x-y is a non-zero square in Fq. This paper gives new results on some colouring problems for Paley graphs and related discussion. © 2005 Elsevier B.V. All rights reserved

    Complexes of not ii-connected graphs

    Full text link
    Complexes of (not) connected graphs, hypergraphs and their homology appear in the construction of knot invariants given by V. Vassiliev. In this paper we study the complexes of not ii-connected kk-hypergraphs on nn vertices. We show that the complex of not 22-connected graphs has the homotopy type of a wedge of (n−2)!(n-2)! spheres of dimension 2n−52n-5. This answers one of the questions raised by Vassiliev in connection with knot invariants. For this case the SnS_n-action on the homology of the complex is also determined. For complexes of not 22-connected kk-hypergraphs we provide a formula for the generating function of the Euler characteristic, and we introduce certain lattices of graphs that encode their topology. We also present partial results for some other cases. In particular, we show that the complex of not (n−2)(n-2)-connected graphs is Alexander dual to the complex of partial matchings of the complete graph. For not (n−3)(n-3)-connected graphs we provide a formula for the generating function of the Euler characteristic

    Realizations of self branched coverings of the 2-sphere

    Full text link
    For a degree d self branched covering of the 2-sphere, a notable combinatorial invariant is an integer partition of 2d -- 2, consisting of the multiplicities of the critical points. A finer invariant is the so called Hurwitz passport. The realization problem of Hurwitz passports remain largely open till today. In this article, we introduce two different types of finer invariants: a bipartite map and an incident matrix. We then settle completely their realization problem by showing that a map, or a matrix, is realized by a branched covering if and only if it satisfies a certain balanced condition. A variant of the bipartite map approach was initiated by W. Thurston. Our results shed some new lights to the Hurwitz passport problem

    Sufficient Conditions for Tuza's Conjecture on Packing and Covering Triangles

    Full text link
    Given a simple graph G=(V,E)G=(V,E), a subset of EE is called a triangle cover if it intersects each triangle of GG. Let νt(G)\nu_t(G) and τt(G)\tau_t(G) denote the maximum number of pairwise edge-disjoint triangles in GG and the minimum cardinality of a triangle cover of GG, respectively. Tuza conjectured in 1981 that τt(G)/νt(G)≤2\tau_t(G)/\nu_t(G)\le2 holds for every graph GG. In this paper, using a hypergraph approach, we design polynomial-time combinatorial algorithms for finding small triangle covers. These algorithms imply new sufficient conditions for Tuza's conjecture on covering and packing triangles. More precisely, suppose that the set TG\mathscr T_G of triangles covers all edges in GG. We show that a triangle cover of GG with cardinality at most 2νt(G)2\nu_t(G) can be found in polynomial time if one of the following conditions is satisfied: (i) νt(G)/∣TG∣≥13\nu_t(G)/|\mathscr T_G|\ge\frac13, (ii) νt(G)/∣E∣≥14\nu_t(G)/|E|\ge\frac14, (iii) ∣E∣/∣TG∣≥2|E|/|\mathscr T_G|\ge2. Keywords: Triangle cover, Triangle packing, Linear 3-uniform hypergraphs, Combinatorial algorithm
    • …
    corecore