184,987 research outputs found

    Personalized Degrees: Effects on Link Formation in Dynamic Networks from an Egocentric Perspective

    Full text link
    Understanding mechanisms driving link formation in dynamic social networks is a long-standing problem that has implications to understanding social structure as well as link prediction and recommendation. Social networks exhibit a high degree of transitivity, which explains the successes of common neighbor-based methods for link prediction. In this paper, we examine mechanisms behind link formation from the perspective of an ego node. We introduce the notion of personalized degree for each neighbor node of the ego, which is the number of other neighbors a particular neighbor is connected to. From empirical analyses on four on-line social network datasets, we find that neighbors with higher personalized degree are more likely to lead to new link formations when they serve as common neighbors with other nodes, both in undirected and directed settings. This is complementary to the finding of Adamic and Adar that neighbor nodes with higher (global) degree are less likely to lead to new link formations. Furthermore, on directed networks, we find that personalized out-degree has a stronger effect on link formation than personalized in-degree, whereas global in-degree has a stronger effect than global out-degree. We validate our empirical findings through several link recommendation experiments and observe that incorporating both personalized and global degree into link recommendation greatly improves accuracy.Comment: To appear at the 10th International Workshop on Modeling Social Media co-located with the Web Conference 201

    Reciprocal Recommendation System for Online Dating

    Full text link
    Online dating sites have become popular platforms for people to look for potential romantic partners. Different from traditional user-item recommendations where the goal is to match items (e.g., books, videos, etc) with a user's interests, a recommendation system for online dating aims to match people who are mutually interested in and likely to communicate with each other. We introduce similarity measures that capture the unique features and characteristics of the online dating network, for example, the interest similarity between two users if they send messages to same users, and attractiveness similarity if they receive messages from same users. A reciprocal score that measures the compatibility between a user and each potential dating candidate is computed and the recommendation list is generated to include users with top scores. The performance of our proposed recommendation system is evaluated on a real-world dataset from a major online dating site in China. The results show that our recommendation algorithms significantly outperform previously proposed approaches, and the collaborative filtering-based algorithms achieve much better performance than content-based algorithms in both precision and recall. Our results also reveal interesting behavioral difference between male and female users when it comes to looking for potential dates. In particular, males tend to be focused on their own interest and oblivious towards their attractiveness to potential dates, while females are more conscientious to their own attractiveness to the other side of the line

    Recommender Systems

    Get PDF
    The ongoing rapid expansion of the Internet greatly increases the necessity of effective recommender systems for filtering the abundant information. Extensive research for recommender systems is conducted by a broad range of communities including social and computer scientists, physicists, and interdisciplinary researchers. Despite substantial theoretical and practical achievements, unification and comparison of different approaches are lacking, which impedes further advances. In this article, we review recent developments in recommender systems and discuss the major challenges. We compare and evaluate available algorithms and examine their roles in the future developments. In addition to algorithms, physical aspects are described to illustrate macroscopic behavior of recommender systems. Potential impacts and future directions are discussed. We emphasize that recommendation has a great scientific depth and combines diverse research fields which makes it of interests for physicists as well as interdisciplinary researchers.Comment: 97 pages, 20 figures (To appear in Physics Reports
    • …
    corecore