4,559 research outputs found

    Physical Layer Security in Heterogeneous Cellular Networks

    Full text link
    The heterogeneous cellular network (HCN) is a promising approach to the deployment of 5G cellular networks. This paper comprehensively studies physical layer security in a multi-tier HCN where base stations (BSs), authorized users and eavesdroppers are all randomly located. We first propose an access threshold based secrecy mobile association policy that associates each user with the BS providing the maximum \emph{truncated average received signal power} beyond a threshold. Under the proposed policy, we investigate the connection probability and secrecy probability of a randomly located user, and provide tractable expressions for the two metrics. Asymptotic analysis reveals that setting a larger access threshold increases the connection probability while decreases the secrecy probability. We further evaluate the network-wide secrecy throughput and the minimum secrecy throughput per user with both connection and secrecy probability constraints. We show that introducing a properly chosen access threshold significantly enhances the secrecy throughput performance of a HCN.Comment: two-column 15 pages, 12 figures, accepted for publication in IEEE Transactions on Communication

    Mobility-Aware Analysis of 5G and B5G Cellular Networks: A Tutorial

    Full text link
    Providing network connectivity to mobile users is a key requirement for cellular wireless networks. User mobility impacts network performance as well as user perceived service quality. For efficient network dimensioning and optimization, it is therefore required to characterize the mobility-aware network performance metrics such as the handoff rate, handoff probability, sojourn time, direction switch rate, and users' throughput or coverage. This characterization is particularly challenging for heterogeneous, dense/ultra-dense, and random cellular networks such as the emerging 5G and beyond 5G (B5G) networks. In this article, we provide a tutorial on mobility-aware performance analysis of both the spatially random and non-random, single-tier and multi-tier cellular networks. We first provide a summary of the different mobility models which include purely random models, spatially correlated, and temporally correlated models. The differences among various mobility models, their statistical properties, and their pros and cons are presented. We then describe two main analytical approaches for mobility-aware performance analysis of both random and non-random cellular networks. For the first approach, we describe a general methodology and present several case studies for different cellular network tessellations such as square lattice, hexagon lattice, single-tier and multi-tier models in which base-stations (BSs) follow a homogeneous Poisson Point Process (PPP). For the second approach, we also outline the general methodology. In addition, we discuss some limitations/imperfections of the existing techniques and provide corrections to these imperfections. Finally, we point out specific 5G application scenarios where the impact of mobility would be significant and outline the challenges associated with mobility-aware analysis of those scenarios

    Downlink Coordinated Multi-Point with Overhead Modeling in Heterogeneous Cellular Networks

    Full text link
    Coordinated multi-point (CoMP) communication is attractive for heterogeneous cellular networks (HCNs) for interference reduction. However, previous approaches to CoMP face two major hurdles in HCNs. First, they usually ignore the inter-cell overhead messaging delay, although it results in an irreducible performance bound. Second, they consider the grid or Wyner model for base station locations, which is not appropriate for HCN BS locations which are numerous and haphazard. Even for conventional macrocell networks without overlaid small cells, SINR results are not tractable in the grid model nor accurate in the Wyner model. To overcome these hurdles, we develop a novel analytical framework which includes the impact of overhead delay for CoMP evaluation in HCNs. This framework can be used for a class of CoMP schemes without user data sharing. As an example, we apply it to downlink CoMP zero-forcing beamforming (ZFBF), and see significant divergence from previous work. For example, we show that CoMP ZFBF does not increase throughput when the overhead channel delay is larger than 60% of the channel coherence time. We also find that, in most cases, coordinating with only one other cell is nearly optimum for downlink CoMP ZFBF.Comment: 27 pages, 8 figure

    Mobility-Aware Modeling and Analysis of Dense Cellular Networks with C-plane/U-plane Split Architecture

    Full text link
    The unrelenting increase in the population of mobile users and their traffic demands drive cellular network operators to densify their network infrastructure. Network densification shrinks the footprint of base stations (BSs) and reduces the number of users associated with each BS, leading to an improved spatial frequency reuse and spectral efficiency, and thus, higher network capacity. However, the densification gain come at the expense of higher handover rates and network control overhead. Hence, users mobility can diminish or even nullifies the foreseen densification gain. In this context, splitting the control plane (C-plane) and user plane (U-plane) is proposed as a potential solution to harvest densification gain with reduced cost in terms of handover rate and network control overhead. In this article, we use stochastic geometry to develop a tractable mobility-aware model for a two-tier downlink cellular network with ultra-dense small cells and C-plane/U-plane split architecture. The developed model is then used to quantify the effect of mobility on the foreseen densification gain with and without C-plane/U-plane split. To this end, we shed light on the handover problem in dense cellular environments, show scenarios where the network fails to support certain mobility profiles, and obtain network design insights

    Handover Management in Dense Cellular Networks: A Stochastic Geometry Approach

    Full text link
    Cellular operators are continuously densifying their networks to cope with the ever-increasing capacity demand. Furthermore, an extreme densification phase for cellular networks is foreseen to fulfill the ambitious fifth generation (5G) performance requirements. Network densification improves spectrum utilization and network capacity by shrinking base stations' (BSs) footprints and reusing the same spectrum more frequently over the spatial domain. However, network densification also increases the handover (HO) rate, which may diminish the capacity gains for mobile users due to HO delays. In highly dense 5G cellular networks, HO delays may neutralize or even negate the gains offered by network densification. In this paper, we present an analytical paradigm, based on stochastic geometry, to quantify the effect of HO delay on the average user rate in cellular networks. To this end, we propose a flexible handover scheme to reduce HO delay in case of highly dense cellular networks. This scheme allows skipping the HO procedure with some BSs along users' trajectories. The performance evaluation and testing of this scheme for only single HO skipping shows considerable gains in many practical scenarios.Comment: 7 pages, 7 figures, ICC 201

    Traffic Management for Heterogeneous Networks with Opportunistic Unlicensed Spectrum Sharing

    Full text link
    This paper studies how to maximize the per-user-based throughput in an M-tier heterogeneous wireless network (HetNet) by optimally managing traffic flows between the access points (APs) in the HetNet. The APs in the first M-1 tiers can use the licensed spectrum at the same time whereas they share the unlicensed spectrum with the APs in the Mth tier by the proposed opportunistic carrier sense multiple access with collision avoidance (CSMA/CA) protocol. The APs that access the licensed and unlicensed spectra simultaneously are able to integrate their spectrum resources by the carrier aggregation technique. We first characterize the distribution of the cell load and the channel access probability of each AP using a generalized AP association scheme. For an AP in each tier, the tight lower bounds on its mean spectrum efficiencies in the licensed and unlicensed spectra are derived for the general random models of the channel gain and AP association weights. We define the per-user link throughput and per-user network throughput based on the derived the mean spectrum efficiencies and maximize them by proposing the decentralized and centralized traffic management schemes for the APs in the first M-1 tiers under the constraint that the per-user link throughput of the tier-M APs must be above some minimum required value. Finally, a numerical example of coexisting LTE and WiFi networks is provided to validate our derived results and findings.Comment: 30 pages, 6 figures, journa

    Coverage and Throughput Analysis with a Non-Uniform Small Cell Deployment

    Full text link
    Small cell network (SCN) offers, for the first time, a low-cost and scalable mechanism to meet the forecast data-traffic demand. In this paper, we propose a non-uniform SCN deployment scheme. The small cell base stations (BSs) in this scheme will not be utilized in the region within a prescribed distance away from any macrocell BSs, defined as the inner region. Based upon the analytical framework provided in this work, the downlink coverage and single user throughput are precisely characterized. Provided that the inner region size is appropriately chosen, we find that the proposed non-uniform SCN deployment scheme can maintain the same level of cellular coverage performance even with 50% less small cell BSs used than the uniform SCN deployment, which is commonly considered in the literature. Furthermore, both the coverage and the single user throughput performance will significantly benefit from the proposed scheme, if its average small cell density is kept identical to the uniform SCN deployment. This work demonstrates the benefits obtained from a simple non-uniform SCN deployment, thus highlighting the importance of deploying small cells selectively.Comment: 12 pages, 7 figures, to be published in IEEE Transactions on Wireless Communication

    Hybrid Full-/Half-Duplex System Analysis in Heterogeneous Wireless Networks

    Full text link
    Full-duplex (FD) radio has been introduced for bidirectional communications on the same temporal and spectral resources so as to maximize spectral efficiency. In this paper, motivated by the recent advances in FD radios, we provide a foundation for hybrid-duplex heterogeneous networks (HDHNs), composed of multi-tier networks with a mixture of access points (APs), operating either in bidirectional FD mode or downlink half-duplex (HD) mode. Specifically, we characterize the net- work interference from FD-mode cells, and derive the HDHN throughput by accounting for AP spatial density, self-interference cancellation (IC) capability, and transmission power of APs and users. By quantifying the HDHN throughput, we present the effect of network parameters and the self-IC capability on the HDHN throughput, and show the superiority of FD mode for larger AP densities (i.e., larger network interference and shorter communication distance) or higher self-IC capability. Furthermore, our results show operating all APs in FD or HD achieves higher throughput compared to the mixture of two mode APs in each tier network, and introducing hybrid-duplex for different tier networks improves the heterogenous network throughput.Comment: 13 pages, 10 figures, to appear in IEEE Transactions on Wireless Communication

    Towards 1 Gbps/UE in Cellular Systems: Understanding Ultra-Dense Small Cell Deployments

    Full text link
    Todays heterogeneous networks comprised of mostly macrocells and indoor small cells will not be able to meet the upcoming traffic demands. Indeed, it is forecasted that at least a 100x network capacity increase will be required to meet the traffic demands in 2020. As a result, vendors and operators are now looking at using every tool at hand to improve network capacity. In this epic campaign, three paradigms are noteworthy, i.e., network densification, the use of higher frequency bands and spectral efficiency enhancement techniques. This paper aims at bringing further common understanding and analysing the potential gains and limitations of these three paradigms, together with the impact of idle mode capabilities at the small cells as well as the user equipment density and distribution in outdoor scenarios. Special attention is paid to network densification and its implications when transitioning to ultra-dense small cell deployments. Simulation results show that network densification with an average inter site distance of 35 m can increase the cell- edge UE throughput by up to 48x, while the use of the 10GHz band with a 500MHz bandwidth can increase the network capacity up to 5x. The use of beamforming with up to 4 antennas per small cell base station lacks behind with cell-edge throughput gains of up to 1.49x. Our study also shows how network densifications reduces multi-user diversity, and thus proportional fair alike schedulers start losing their advantages with respect to round robin ones. The energy efficiency of these ultra-dense small cell deployments is also analysed, indicating the need for energy harvesting approaches to make these deployments energy- efficient. Finally, the top ten challenges to be addressed to bring ultra-dense small cell deployments to reality are also discussed

    Scalable RAN Virtualization in Multi-Tenant LTE-A Heterogeneous Networks (Extended version)

    Full text link
    Cellular communications are evolving to facilitate the current and expected increasing needs of Quality of Service (QoS), high data rates and diversity of offered services. Towards this direction, Radio Access Network (RAN) virtualization aims at providing solutions of mapping virtual network elements onto radio resources of the existing physical network. This paper proposes the Resources nEgotiation for NEtwork Virtualization (RENEV) algorithm, suitable for application in Heterogeneous Networks (HetNets) in Long Term Evolution-Advanced (LTE-A) environments, consisting of a macro evolved NodeB (eNB) overlaid with small cells. By exploiting Radio Resource Management (RRM) principles, RENEV achieves slicing and on demand delivery of resources. Leveraging the multi-tenancy approach, radio resources are transferred in terms of physical radio Resource Blocks (RBs) among multiple heterogeneous base stations, interconnected via the X2 interface. The main target is to deal with traffic variations in geographical dimension. All signaling design considerations under the current Third Generation Partnership Project (3GPP) LTE-A architecture are also investigated. Analytical studies and simulation experiments are conducted to evaluate RENEV in terms of network's throughput as well as its additional signaling overhead. Moreover we show that RENEV can be applied independently on top of already proposed schemes for RAN virtualization to improve their performance. The results indicate that significant merits are achieved both from network's and users' perspective as well as that it is a scalable solution for different number of small cells.Comment: 40 pages (including Appendices), Accepted for publication in the IEEE Transactions on Vehicular Technolog
    • …
    corecore