93,835 research outputs found

    A Unified Scheme for Two-Receiver Broadcast Channels with Receiver Message Side Information

    Full text link
    This paper investigates the capacity regions of two-receiver broadcast channels where each receiver (i) has both common and private-message requests, and (ii) knows part of the private message requested by the other receiver as side information. We first propose a transmission scheme and derive an inner bound for the two-receiver memoryless broadcast channel. We next prove that this inner bound is tight for the deterministic channel and the more capable channel, thereby establishing their capacity regions. We show that this inner bound is also tight for all classes of two-receiver broadcast channels whose capacity regions were known prior to this work. Our proposed scheme is consequently a unified capacity-achieving scheme for these classes of broadcast channels.Comment: accepted and to be presented at the 2015 IEEE International Symposium on Information Theory (ISIT 2015

    Maximum Euclidean distance network coded modulation for asymmetric decode-and-forward two-way relaying

    No full text
    Network coding (NC) compresses two traffic flows with the aid of low-complexity algebraic operations, hence holds the potential of significantly improving both the efficiency of wireless two-way relaying, where each receiver is collocated with a transmitter and hence has prior knowledge of the message intended for the distant receiver. In this contribution, network coded modulation (NCM) is proposed for jointly performing NC and modulation. As in classic coded modulation, the Euclidean distance between the symbols is maximised, hence the symbol error probability is minimised. Specifically, the authors first propose set-partitioning-based NCM as an universal concept which can be combined with arbitrary constellations. Then the authors conceive practical phase-shift keying/quadrature amplitude modulation (PSK/QAM) NCM schemes, referred to as network coded PSK/QAM, based on modulo addition of the normalised phase/amplitude. To achieve a spatial diversity gain at a low complexity, a NC oriented maximum ratio combining scheme is proposed for combining the network coded signal and the original signal of the source. An adaptive NCM is also proposed to maximise the throughput while guaranteeing a target bit error probability (BEP). Both theoretical performance analysis and simulations demonstrate that the proposed NCM can achieve at least 3 dB signal-to-noise ratio gain and two times diversity gain

    Wireless Cellular Networks

    No full text
    When aiming for achieving high spectral efficiency in wireless cellular networks, cochannel interference (CCI) becomes the dominant performancelimiting factor. This article provides a survey of CCI mitigation techniques, where both active and passive approaches are discussed in the context of both open- and closed-loop designs.More explicitly, we considered both the family of flexible frequency-reuse (FFR)-aided and dynamic channel allocation (DCA)-aided interference avoidance techniques as well as smart antenna-aided interference mitigation techniques, which may be classified as active approach

    MIMO Assisted Space-Code-Division Multiple-Access: Linear Detectors and Performance over Multipath Fading Channels

    No full text
    In this contribution we propose and investigate a multiple-input multiple-output space-division, code-division multiple-access (MIMO SCDMA) scheme. The main objective is to improve the capacity of the existing DS-CDMA systems, for example, for supporting an increased number of users, by deploying multiple transmit and receive antennas in the corresponding systems and by using some advanced transmission and detection algorithms. In the proposed MIMO SCDMA system, each user can be distinguished jointly by its spreading code-signature and its unique channel impulse response (CIR) transfer function referred to as spatial-signature. Hence, the number of users might be supported by the MIMO SCDMA system and the corresponding achievable performance are determined by the degrees of freedom provided by both the code-signatures and the spatial-signatures, as well as by how efficiently the degrees of freedom are exploited. Specifically, the number of users supported by the proposed MIMO SCDMA can be significantly higher than the number of chips per bit, owing to the employment of space-division. In this contribution space-time spreading (STS) is employed for configuring the transmitted signals. Three types of low-complexity linear detectors, namely correlation, decorrelating and minimum mean-square error (MMSE), are considered for detecting the MIMO SCDMA signals. The BER performance of the MIMO SCDMA system associated with these linear detectors are evaluated by simulations, when assuming that the MIMO SCDMA signals are transmitted over multipath Rayleigh fading channels. Our study and simulation results show that MIMO SCDMA assisted by multiuser detection is capable of facilitating joint space-time de-spreading, multipath combining and receiver diversity combining, while simultaneously suppressing the multiuser interfering signals
    • 

    corecore