37 research outputs found

    The degree-diameter problem for sparse graph classes

    Full text link
    The degree-diameter problem asks for the maximum number of vertices in a graph with maximum degree Δ\Delta and diameter kk. For fixed kk, the answer is Θ(Δk)\Theta(\Delta^k). We consider the degree-diameter problem for particular classes of sparse graphs, and establish the following results. For graphs of bounded average degree the answer is Θ(Δk1)\Theta(\Delta^{k-1}), and for graphs of bounded arboricity the answer is \Theta(\Delta^{\floor{k/2}}), in both cases for fixed kk. For graphs of given treewidth, we determine the the maximum number of vertices up to a constant factor. More precise bounds are given for graphs of given treewidth, graphs embeddable on a given surface, and apex-minor-free graphs

    Energy Complexity of Distance Computation in Multi-hop Networks

    Full text link
    Energy efficiency is a critical issue for wireless devices operated under stringent power constraint (e.g., battery). Following prior works, we measure the energy cost of a device by its transceiver usage, and define the energy complexity of an algorithm as the maximum number of time slots a device transmits or listens, over all devices. In a recent paper of Chang et al. (PODC 2018), it was shown that broadcasting in a multi-hop network of unknown topology can be done in polylogn\text{poly} \log n energy. In this paper, we continue this line of research, and investigate the energy complexity of other fundamental graph problems in multi-hop networks. Our results are summarized as follows. 1. To avoid spending Ω(D)\Omega(D) energy, the broadcasting protocols of Chang et al. (PODC 2018) do not send the message along a BFS tree, and it is open whether BFS could be computed in o(D)o(D) energy, for sufficiently large DD. In this paper we devise an algorithm that attains O~(n)\tilde{O}(\sqrt{n}) energy cost. 2. We show that the framework of the Ω(n){\Omega}(n) round lower bound proof for computing diameter in CONGEST of Abboud et al. (DISC 2017) can be adapted to give an Ω~(n)\tilde{\Omega}(n) energy lower bound in the wireless network model (with no message size constraint), and this lower bound applies to O(logn)O(\log n)-arboricity graphs. From the upper bound side, we show that the energy complexity of O~(n)\tilde{O}(\sqrt{n}) can be attained for bounded-genus graphs (which includes planar graphs). 3. Our upper bounds for computing diameter can be extended to other graph problems. We show that exact global minimum cut or approximate ss--tt minimum cut can be computed in O~(n)\tilde{O}(\sqrt{n}) energy for bounded-genus graphs

    Efficient Distributed Decomposition and Routing Algorithms in Minor-Free Networks and Their Applications

    Full text link
    In the LOCAL model, low-diameter decomposition is a useful tool in designing algorithms, as it allows us to shift from the general graph setting to the low-diameter graph setting, where brute-force information gathering can be done efficiently. Recently, Chang and Su [PODC 2022] showed that any high-conductance network excluding a fixed minor contains a high-degree vertex, so the entire graph topology can be gathered to one vertex efficiently in the CONGEST model using expander routing. Therefore, in networks excluding a fixed minor, many problems that can be solved efficiently in LOCAL via low-diameter decomposition can also be solved efficiently in CONGEST via expander decomposition. In this work, we show improved decomposition and routing algorithms for networks excluding a fixed minor in the CONGEST model. Our algorithms cost poly(logn,1/ϵ)\text{poly}(\log n, 1/\epsilon) rounds deterministically. For bounded-degree graphs, our algorithms finish in O(ϵ1logn)+ϵO(1)O(\epsilon^{-1}\log n) + \epsilon^{-O(1)} rounds. Our algorithms have a wide range of applications, including the following results in CONGEST. 1. A (1ϵ)(1-\epsilon)-approximate maximum independent set in a network excluding a fixed minor can be computed deterministically in O(ϵ1logn)+ϵO(1)O(\epsilon^{-1}\log^\ast n) + \epsilon^{-O(1)} rounds, nearly matching the Ω(ϵ1logn)\Omega(\epsilon^{-1}\log^\ast n) lower bound of Lenzen and Wattenhofer [DISC 2008]. 2. Property testing of any additive minor-closed property can be done deterministically in O(logn)O(\log n) rounds if ϵ\epsilon is a constant or O(ϵ1logn)+ϵO(1)O(\epsilon^{-1}\log n) + \epsilon^{-O(1)} rounds if the maximum degree Δ\Delta is a constant, nearly matching the Ω(ϵ1logn)\Omega(\epsilon^{-1}\log n) lower bound of Levi, Medina, and Ron [PODC 2018].Comment: To appear in PODC 202

    Graph Theory

    Get PDF
    Graph theory is a rapidly developing area of mathematics. Recent years have seen the development of deep theories, and the increasing importance of methods from other parts of mathematics. The workshop on Graph Theory brought together together a broad range of researchers to discuss some of the major new developments. There were three central themes, each of which has seen striking recent progress: the structure of graphs with forbidden subgraphs; graph minor theory; and applications of the entropy compression method. The workshop featured major talks on current work in these areas, as well as presentations of recent breakthroughs and connections to other areas. There was a particularly exciting selection of longer talks, including presentations on the structure of graphs with forbidden induced subgraphs, embedding simply connected 2-complexes in 3-space, and an announcement of the solution of the well-known Oberwolfach Problem

    Turán-Ramsey theorems and simple asymptotically extremal structures

    Get PDF
    This paper is a continuation of [10], where P. Erdos, A. Hajnal, V. T. Sos. and E. Szemeredi investigated the following problem: Assume that a so called forbidden graph L and a function f(n) = o(n) are fixed. What is the maximum number of edges a graph G(n) on n vertices can have without containing L as a subgraph, and also without having more than f(n) independent vertices? This problem is motivated by the classical Turan and Ramsey theorems, and also by some applications of the Turin theorem to geometry, analysis (in particular, potential theory) [27 29], [11-13]. In this paper we are primarily interested in the following problem. Let (G(n)) be a graph sequence where G(n) has n vertices and the edges of G(n) are coloured by the colours chi1,...,chi(r), so that the subgraph of colour chi(nu) contains no complete subgraph K(pnu), (nu = 1,...,r). Further, assume that the size of any independent set in G(n) is o(n) (as n --> infinity). What is the maximum number of edges in G(n) under these conditions? One of the main results of this paper is the description of a procedure yielding relatively simple sequences of asymptotically extremal graphs for the problem. In a continuation of this paper we shall investigate the problem where instead of alpha(G(n)) = o(n) we assume the stronger condition that the maximum size of a K(p)-free induced subgraph of G(n) is o(n)

    Cycles and Bases of Graphs and Matroids

    Get PDF
    The objective of this dissertation is to investigate the properties of cycles and bases in matroids and in graphs. In [62], Tutte defined the circuit graph of a matroid and proved that a matroid is connected if and only if its circuit graph is connected. Motivated by Tutte\u27s result, we introduce the 2nd order circuit graph of a matroid, and prove that for any connected matroid M other than U1,1, the second order circuit graph of M has diameter at most 2 if and only if M does not have a restricted minor isomorphic to U2,6.;Another research conducted in this dissertation is related to the eulerian subgraph problem in graph theory. A graph G is eulerian if G is connected without vertices of odd degrees, and G is supereulerian if G has a spanning eulerian subgraph. In [3], Boesch, Suffey and Tindel raised a problem to determine when a graph is supereulerian, and they remarked that such a problem would be a difficult one. In [55], Pulleyblank confirmed the remark by showing that the problem to determine if a graph is supereulerian, even within planar graphs, is NP-complete. Catlin in [8] introduced a reduction method based on the theory of collapsible graphs to search for spanning eulerian subgraphs in a given graph G. In this dissertation, we introduce the supereulerian width of a graph G, which generalizes the concept of supereulerian graphs, and extends the supereulerian problem to the supereulerian width problem in graphs. Further, we also generalize the concept of collapsible graphs to s-collapsible graphs and develop the reduction method based on the theory of s-collapsible graphs. Our studies extend the collapsible graph theory of Catlin. These are applied to show for any integer n \u3e 2, the complete graph Kn is (n - 3)- collapsible, and so the supereulerian width of Kn is n - 2. We also prove a best possible degree condition for a simple graph to have supereulerian width at least 3.;The number of edge-disjoint spanning trees plays an important role in the design of networks, as it is considered as a measure of the strength of the network. As disjoint spanning trees are disjoint bases in graphic matroids, it is important to study the properties related to the number of disjoint bases in matroids. In this dissertation, we develop a decomposition theory based on the density function of a matroid, and prove a decomposition theorem that partitions the ground set of a matroid M into subsets based on their densities. As applications of the decomposition theorem, we investigate problems related to the properties of disjoint bases in a matroid. We showed that for a given integer k \u3e 0, any matroid M can be embedded into a matroid M\u27 with the same rank (that is, r(M) = r( M\u27)) such that M\u27 has k disjoint bases. Further we determine the minimum value of |E( M\u27)| -- |E(M)| in terms of invariants of M. For a matroid M with at least k disjoint bases, we characterize the set of elements in M such that removing any one of them would still result in a matroid with at least k disjoint bases
    corecore