429 research outputs found

    Automated program transformation through proof transformation

    Get PDF

    A survey of program transformation with special reference to unfold/fold style program development

    No full text
    This paper consists of a survey of current, and past, work on *program transformation* for the purpose of optimization. We first discuss some of the general methodological frameworks for program modification, such as *analogy*, *explanation based learning*, *partial evaluation*, *proof theoretic optimization*, and the *unfold/fold* technique. These frameworks are not mutually exclusive, and the latter, unfold/fold, is certainly the most widely used technique, in various guises, for program transformation. Thus we shall often have occasion to: compare the relative merits of systems that employ the technique in some form, *and*; compare the unfold/fold systems with those that employ alternative techniques. We also include (and compare with unfold/fold) a brief survey of recent work concerning the use of *formal methods* for program transformation

    Multilevel Runtime Verification for Safety and Security Critical Cyber Physical Systems from a Model Based Engineering Perspective

    Get PDF
    Advanced embedded system technology is one of the key driving forces behind the rapid growth of Cyber-Physical System (CPS) applications. CPS consists of multiple coordinating and cooperating components, which are often software-intensive and interact with each other to achieve unprecedented tasks. Such highly integrated CPSs have complex interaction failures, attack surfaces, and attack vectors that we have to protect and secure against. This dissertation advances the state-of-the-art by developing a multilevel runtime monitoring approach for safety and security critical CPSs where there are monitors at each level of processing and integration. Given that computation and data processing vulnerabilities may exist at multiple levels in an embedded CPS, it follows that solutions present at the levels where the faults or vulnerabilities originate are beneficial in timely detection of anomalies. Further, increasing functional and architectural complexity of critical CPSs have significant safety and security operational implications. These challenges are leading to a need for new methods where there is a continuum between design time assurance and runtime or operational assurance. Towards this end, this dissertation explores Model Based Engineering methods by which design assurance can be carried forward to the runtime domain, creating a shared responsibility for reducing the overall risk associated with the system at operation. Therefore, a synergistic combination of Verification & Validation at design time and runtime monitoring at multiple levels is beneficial in assuring safety and security of critical CPS. Furthermore, we realize our multilevel runtime monitor framework on hardware using a stream-based runtime verification language

    Computer Aided Verification

    Get PDF
    This open access two-volume set LNCS 11561 and 11562 constitutes the refereed proceedings of the 31st International Conference on Computer Aided Verification, CAV 2019, held in New York City, USA, in July 2019. The 52 full papers presented together with 13 tool papers and 2 case studies, were carefully reviewed and selected from 258 submissions. The papers were organized in the following topical sections: Part I: automata and timed systems; security and hyperproperties; synthesis; model checking; cyber-physical systems and machine learning; probabilistic systems, runtime techniques; dynamical, hybrid, and reactive systems; Part II: logics, decision procedures; and solvers; numerical programs; verification; distributed systems and networks; verification and invariants; and concurrency

    Politics of Knowledge

    Get PDF
    The compendium The Politics of Knowledge: Understanding the Evidence for Agroecology, Regenerative Approaches, and Indigenous Foodways (English | Español | Français) tackles the dominant questions about evidence that are holding back food systems transformation. Authors unpack the narratives and legacies behind these questions and explore the many ways funders, researchers, and policymakers can take transformative action

    The Politics of Knowledge: Understanding the Evidence for Agroecology, Regenerative Approaches, and Indigenous Foodways

    Get PDF
    The compendium The Politics of Knowledge: Understanding the Evidence for Agroecology, Regenerative Approaches, and Indigenous Foodways tackles the dominant questions about evidence that are holding back food systems transformation. Authors unpack the narratives and legacies behind these questions and explore the many ways funders, researchers, and policymakers can take transformative action.Working with 17 contributing teams representing geographic, institutional, sectoral, gender, and racial diversity, the compendium explores the power and politics that shape and infuse our understanding of evidence, what counts as evidence, and the broad range of ways evidence is documented.Alongside recommendations for action, authors focus on unpacking five dominant questions:Can these approaches feed the world?Can these approaches be scaled?Can these approaches provide meaningful livelihoods?Can these approaches solve the climate, biodiversity, and soils crises?Can these approaches accelerate transformation

    Computer Aided Verification

    Get PDF
    This open access two-volume set LNCS 11561 and 11562 constitutes the refereed proceedings of the 31st International Conference on Computer Aided Verification, CAV 2019, held in New York City, USA, in July 2019. The 52 full papers presented together with 13 tool papers and 2 case studies, were carefully reviewed and selected from 258 submissions. The papers were organized in the following topical sections: Part I: automata and timed systems; security and hyperproperties; synthesis; model checking; cyber-physical systems and machine learning; probabilistic systems, runtime techniques; dynamical, hybrid, and reactive systems; Part II: logics, decision procedures; and solvers; numerical programs; verification; distributed systems and networks; verification and invariants; and concurrency
    corecore