17,689 research outputs found

    One-Shot Learning using Mixture of Variational Autoencoders: a Generalization Learning approach

    Get PDF
    Deep learning, even if it is very successful nowadays, traditionally needs very large amounts of labeled data to perform excellent on the classification task. In an attempt to solve this problem, the one-shot learning paradigm, which makes use of just one labeled sample per class and prior knowledge, becomes increasingly important. In this paper, we propose a new one-shot learning method, dubbed MoVAE (Mixture of Variational AutoEncoders), to perform classification. Complementary to prior studies, MoVAE represents a shift of paradigm in comparison with the usual one-shot learning methods, as it does not use any prior knowledge. Instead, it starts from zero knowledge and one labeled sample per class. Afterward, by using unlabeled data and the generalization learning concept (in a way, more as humans do), it is capable to gradually improve by itself its performance. Even more, if there are no unlabeled data available MoVAE can still perform well in one-shot learning classification. We demonstrate empirically the efficiency of our proposed approach on three datasets, i.e. the handwritten digits (MNIST), fashion products (Fashion-MNIST), and handwritten characters (Omniglot), showing that MoVAE outperforms state-of-the-art one-shot learning algorithms

    Event-Based Modeling with High-Dimensional Imaging Biomarkers for Estimating Spatial Progression of Dementia

    Full text link
    Event-based models (EBM) are a class of disease progression models that can be used to estimate temporal ordering of neuropathological changes from cross-sectional data. Current EBMs only handle scalar biomarkers, such as regional volumes, as inputs. However, regional aggregates are a crude summary of the underlying high-resolution images, potentially limiting the accuracy of EBM. Therefore, we propose a novel method that exploits high-dimensional voxel-wise imaging biomarkers: n-dimensional discriminative EBM (nDEBM). nDEBM is based on an insight that mixture modeling, which is a key element of conventional EBMs, can be replaced by a more scalable semi-supervised support vector machine (SVM) approach. This SVM is used to estimate the degree of abnormality of each region which is then used to obtain subject-specific disease progression patterns. These patterns are in turn used for estimating the mean ordering by fitting a generalized Mallows model. In order to validate the biomarker ordering obtained using nDEBM, we also present a framework for Simulation of Imaging Biomarkers' Temporal Evolution (SImBioTE) that mimics neurodegeneration in brain regions. SImBioTE trains variational auto-encoders (VAE) in different brain regions independently to simulate images at varying stages of disease progression. We also validate nDEBM clinically using data from the Alzheimer's Disease Neuroimaging Initiative (ADNI). In both experiments, nDEBM using high-dimensional features gave better performance than state-of-the-art EBM methods using regional volume biomarkers. This suggests that nDEBM is a promising approach for disease progression modeling.Comment: IPMI 201

    Distributed Gaussian Processes

    Get PDF
    To scale Gaussian processes (GPs) to large data sets we introduce the robust Bayesian Committee Machine (rBCM), a practical and scalable product-of-experts model for large-scale distributed GP regression. Unlike state-of-the-art sparse GP approximations, the rBCM is conceptually simple and does not rely on inducing or variational parameters. The key idea is to recursively distribute computations to independent computational units and, subsequently, recombine them to form an overall result. Efficient closed-form inference allows for straightforward parallelisation and distributed computations with a small memory footprint. The rBCM is independent of the computational graph and can be used on heterogeneous computing infrastructures, ranging from laptops to clusters. With sufficient computing resources our distributed GP model can handle arbitrarily large data sets.Comment: 10 pages, 5 figures. Appears in Proceedings of ICML 201
    • …
    corecore