5,518 research outputs found

    Metric characterization of cluster dynamics on the Sierpinski gasket

    Full text link
    We develop and implement an algorithm for the quantitative characterization of cluster dynamics occurring on cellular automata defined on an arbitrary structure. As a prototype for such systems we focus on the Ising model on a finite Sierpsinski Gasket, which is known to possess a complex thermodynamic behavior. Our algorithm requires the projection of evolving configurations into an appropriate partition space, where an information-based metrics (Rohlin distance) can be naturally defined and worked out in order to detect the changing and the stable components of clusters. The analysis highlights the existence of different temperature regimes according to the size and the rate of change of clusters. Such regimes are, in turn, related to the correlation length and the emerging "critical" fluctuations, in agreement with previous thermodynamic analysis, hence providing a non-trivial geometric description of the peculiar critical-like behavior exhibited by the system. Moreover, at high temperatures, we highlight the existence of different time scales controlling the evolution towards chaos.Comment: 20 pages, 8 figure

    Learning and Testing Variable Partitions

    Get PDF
    Let FF be a multivariate function from a product set Σn\Sigma^n to an Abelian group GG. A kk-partition of FF with cost δ\delta is a partition of the set of variables V\mathbf{V} into kk non-empty subsets (X1,…,Xk)(\mathbf{X}_1, \dots, \mathbf{X}_k) such that F(V)F(\mathbf{V}) is δ\delta-close to F1(X1)+⋯+Fk(Xk)F_1(\mathbf{X}_1)+\dots+F_k(\mathbf{X}_k) for some F1,…,FkF_1, \dots, F_k with respect to a given error metric. We study algorithms for agnostically learning kk partitions and testing kk-partitionability over various groups and error metrics given query access to FF. In particular we show that 1.1. Given a function that has a kk-partition of cost δ\delta, a partition of cost O(kn2)(δ+ϵ)\mathcal{O}(k n^2)(\delta + \epsilon) can be learned in time O~(n2poly(1/ϵ))\tilde{\mathcal{O}}(n^2 \mathrm{poly} (1/\epsilon)) for any ϵ>0\epsilon > 0. In contrast, for k=2k = 2 and n=3n = 3 learning a partition of cost δ+ϵ\delta + \epsilon is NP-hard. 2.2. When FF is real-valued and the error metric is the 2-norm, a 2-partition of cost δ2+ϵ\sqrt{\delta^2 + \epsilon} can be learned in time O~(n5/ϵ2)\tilde{\mathcal{O}}(n^5/\epsilon^2). 3.3. When FF is Zq\mathbb{Z}_q-valued and the error metric is Hamming weight, kk-partitionability is testable with one-sided error and O(kn3/ϵ)\mathcal{O}(kn^3/\epsilon) non-adaptive queries. We also show that even two-sided testers require Ω(n)\Omega(n) queries when k=2k = 2. This work was motivated by reinforcement learning control tasks in which the set of control variables can be partitioned. The partitioning reduces the task into multiple lower-dimensional ones that are relatively easier to learn. Our second algorithm empirically increases the scores attained over previous heuristic partitioning methods applied in this context.Comment: Innovations in Theoretical Computer Science (ITCS) 202

    Covariate assisted screening and estimation

    Full text link
    Consider a linear model Y=Xβ+zY=X\beta+z, where X=Xn,pX=X_{n,p} and z∼N(0,In)z\sim N(0,I_n). The vector β\beta is unknown but is sparse in the sense that most of its coordinates are 00. The main interest is to separate its nonzero coordinates from the zero ones (i.e., variable selection). Motivated by examples in long-memory time series (Fan and Yao [Nonlinear Time Series: Nonparametric and Parametric Methods (2003) Springer]) and the change-point problem (Bhattacharya [In Change-Point Problems (South Hadley, MA, 1992) (1994) 28-56 IMS]), we are primarily interested in the case where the Gram matrix G=X′XG=X'X is nonsparse but sparsifiable by a finite order linear filter. We focus on the regime where signals are both rare and weak so that successful variable selection is very challenging but is still possible. We approach this problem by a new procedure called the covariate assisted screening and estimation (CASE). CASE first uses a linear filtering to reduce the original setting to a new regression model where the corresponding Gram (covariance) matrix is sparse. The new covariance matrix induces a sparse graph, which guides us to conduct multivariate screening without visiting all the submodels. By interacting with the signal sparsity, the graph enables us to decompose the original problem into many separated small-size subproblems (if only we know where they are!). Linear filtering also induces a so-called problem of information leakage, which can be overcome by the newly introduced patching technique. Together, these give rise to CASE, which is a two-stage screen and clean [Fan and Song Ann. Statist. 38 (2010) 3567-3604; Wasserman and Roeder Ann. Statist. 37 (2009) 2178-2201] procedure, where we first identify candidates of these submodels by patching and screening, and then re-examine each candidate to remove false positives.Comment: Published in at http://dx.doi.org/10.1214/14-AOS1243 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Properties of interaction networks underlying the minority game

    Get PDF
    The minority game is a well-known agent-based model with no explicit interaction among its agents. However, it is known that they interact through the global magnitudes of the model and through their strategies. In this work we have attempted to formalize the implicit interactions among minority game agents as if they were links on a complex network. We have defined the link between two agents by quantifying the similarity between them. This link definition is based on the information of the instance of the game (the set of strategies assigned to each agent at the beginning) without any dynamic information on the game and brings about a static, unweighed and undirected network. We have analyzed the structure of the resulting network for different parameters, such as the number of agents ( N ) and the agent's capacity to process information ( m ) , always taking into account games with two strategies per agent. In the region of crowd effects of the model, the resulting networks structure is a small-world network, whereas in the region where the behavior of the minority game is the same as in a game of random decisions, networks become a random network of Erdos-Renyi. The transition between these two types of networks is slow, without any peculiar feature of the network in the region of the coordination among agents. Finally, we have studied the resulting static networks for the full strategy minority game model, a maximal instance of the minority game in which all possible agents take part in the game. We have explicitly calculated the degree distribution of the full strategy minority game network and, on the basis of this analytical result, we have estimated the degree distribution of the minority game network, which is in accordance with computational results.Fil: Caridi, Délida Inés. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Cálculo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    Exploring the effect of sex on empirical fitness landscapes

    Get PDF
    The nature of epistasis has important consequences for the evolutionary significance of sex and recombination. Recent efforts to find negative epistasis as a source of negative linkage disequilibrium and associated long-term advantage to sex have yielded little support. Sign epistasis, where the sign of the fitness effects of alleles varies across genetic backgrounds, is responsible for the ruggedness of the fitness landscape, with several unexplored implications for the evolution of sex. Here, we describe fitness landscapes for two sets of strains of the asexual fungus Aspergillus niger involving all combinations of five mutations. We find that 30% of the single-mutation fitness effects are positive despite their negative effect in the wild-type strain and that several local fitness maxima and minima are present. We then compare adaptation of sexual and asexual populations on these empirical fitness landscapes by using simulations. The results show a general disadvantage of sex on these rugged landscapes, caused by the breakdown by recombination of genotypes on fitness peaks. Sex facilitates movement to the global peak only for some parameter values on one landscape, indicating its dependence on the landscape’s topography. We discuss possible reasons for the discrepancy between our results and the reports of faster adaptation of sexual population
    • …
    corecore