35 research outputs found

    MINIMASI MAKESPAN PADA PERSOALAN PENJADWALAN ORDERED FLOWSHOP MENGGUNAKAN PSO

    Get PDF
    The production scheduling problem is in the kind of flowshop with n jobs and m machines, to get the order of the schedule for allocating operations of the jobs to the available machines so as to get the minimum total time for completion of all job or commonly called makespan. This study uses an optimization technique approach with the PSO algorithm to get minimum makespan on the ordered flowhop scheduling problem. The performance of the scheduling algorithm presented is evaluated by testing on a benchmark data set of 240 variations in the combination number of jobs and machines. The minimum measure is obtained as a result of scheduling with PSO, whose process stops at a certain iteration when in the last 10 iterations there is no change in the value of a better makespan. The performance of the PSO algorithm is efficient at regular flow scheduling with the use of the most iterations of 19 iterations and the longest execution time of 28.42 seconds or less than half a minute, namely scheduling instances with the largest number of machines and jobs. In this research, only the analysis of the resulting minimal forward and the time of execution was carried out. Further research can be extended by not only measuring the minimum makespan, such as measuring total flowtime, total tardiness, and others

    COMBINATION OF ACO AND PSO TO MINIMIZE MAKESPAN IN ORDERED FLOWSHOP SCHEDULING PROBLEMS

    Get PDF
    The problem of scheduling flowshop production is one of the most versatile problems and is often encountered in many industries. Effective scheduling is important because it has a significant impact on reducing costs and increasing productivity. However, solving the ordered flowshop scheduling problem with the aim of minimizing makespan requires a difficult computation known as NP-hard. This research will contribute to the application of combination ACO and PSO to minimize makespan in the ordered flowshop scheduling problem. The performance of the proposed scheduling algorithm is evaluated by testing the data set of 600 ordered flowshop scheduling problems with various combinations of job and machine size combinations. The test results show that the ACO-PSO algorithm is able to provide a better scheduling solution for the scheduling group with small dimensions, namely 76 instances from a total of 600 inctances and is not good at obtaining makespan in the scheduling group with large dimensions. The ACO-PSO algorithm uses execution time which increases as the dimension size (multiple jobs and many machines) increases in a scheduled instanc

    On the exact solution of the no-wait flow shop problem with due date constraints

    Get PDF
    Peer ReviewedThis paper deals with the no-wait flow shop scheduling problem with due date constraints. In the no-wait flow shop problem, waiting time is not allowed between successive operations of jobs. Moreover, the jobs should be completed before their respective due dates; due date constraints are dealt with as hard constraints. The considered performance criterion is makespan. The problem is strongly NP-hard. This paper develops a number of distinct mathematical models for the problem based on different decision variables. Namely, a mixed integer programming model, two quadratic mixed integer programming models, and two constraint programming models are developed. Moreover, a novel graph representation is developed for the problem. This new modeling technique facilitates the investigation of some of the important characteristics of the problem; this results in a number of propositions to rule out a large number of infeasible solutions from the set of all possible permutations. Afterward, the new graph representation and the resulting propositions are incorporated into a new exact algorithm to solve the problem to optimality. To investigate the performance of the mathematical models and to compare them with the developed exact algorithm, a number of test problems are solved and the results are reported. Computational results demonstrate that the developed algorithm is significantly faster than the mathematical models

    A particle swarm optimisation for the no-wait flow shop problem with due date constraints.

    Get PDF
    Peer ReviewedThis paper considers the no-wait flow shop scheduling problem with due date constraints. In the no-wait flow shop problem, waiting time is not allowed between successive operations of jobs. Moreover, a due date is associated with the completion of each job. The considered objective function is makespan. This problem is proved to be strongly NP-Hard. In this paper, a particle swarm optimisation (PSO) is developed to deal with the problem. Moreover, the effect of some dispatching rules for generating initial solutions are studied. A Taguchi-based design of experience approach has been followed to determine the effect of the different values of the parameters on the performance of the algorithm. To evaluate the performance of the proposed PSO, a large number of benchmark problems are selected from the literature and solved with different due date and penalty settings. Computational results confirm that the proposed PSO is efficient and competitive; the developed framework is able to improve many of the best-known solutions of the test problems available in the literature

    Generating robust and stable machine schedules from a proactive standpoint

    Get PDF
    Ankara : The Department of Industrial Engineering and the Institute of Engineering and Science of Bilkent University, 2009.Thesis (Ph. D.) -- Bilkent University, 2009.Includes bibliographical references leaves 117-121.In practice, scheduling systems are subject to considerable uncertainty in highly dynamic operating environments. The ability to cope with uncertainty in the scheduling process is becoming an increasingly important issue. In this thesis we take a proactive approach to generate robust and stable schedules for the environments with two sources of uncertainty: processing time variability and machine breakdowns. The information about the uncertainty is modeled using cumulative distribution functions and probability theory is utilized to derive inferences. We first focus on the single machine environment. We define two robustness (expected total flow time and expected total tardiness) and three stability (the sum of the squared and absolute differences of the job completion times and the sum of the variances of the realized completion times) measures. We identify special cases for which the measures can be optimized without much difficulty. We develop a dominance rule and two lower bounds for one of the robustness measures, which are employed in a branch-and-bound algorithm to solve the problem exactly. We also propose a beam-search heuristic to solve large problems for all five measures. We provide extensive discussion of our numerical results. Next, we study the problem of optimizing both robustness and stability simultaneously. We generate the set of all Pareto optimal points via -constraint method. We formulate the sub-problems required by the method and establish their computational complexity status. Two variants of the method that works with only a single type of sub-problem are also considered. A dominance rule and alternative ways to enforce the rule to strengthen one of these versions are discussed. The performance of the proposed technique is evaluated with an experimental study. An approach to limit the total number of generated points while keeping their spread uniform is also proposed. Finally, we consider the problem of generating stable schedules in a job shop environment with processing time variability and random machine breakdowns. The stability measure under consideration is the sum of the variances of the realized completion times. We show that the problem is not in the class NP. Hence, a surrogate stability measure is developed to manage the problem. This version of the problem is proven to be NP-hard even without machine breakdowns. Two branchand-bound algorithms are developed for this case. A beam-search and a tabu-search based two heuristic algorithms are developed to handle realistic size problems with machine breakdowns. The results of extensive computational experiments are also provided.Gören, SelçukPh.D

    Hedging production schedules against uncertainty in manufacturing environment with a review of robustness and stability research

    Get PDF
    Scheduling is a decision-making process that is concerned with the allocation of limited resources to competing tasks (operations of jobs) over a time period with the goal of optimising one or more objectives. In theory, the objective is usually to optimise some classical system performance measures such as makespan, tardiness/earliness and flowtime under deterministic and static assumptions. In practice, however, scheduling systems operate in dynamic and stochastic environments. Hence, there is a need to incorporate both uncertainty and dynamic elements into the scheduling process. In this paper, the major issues involved in scheduling decisions are discussed and the basic approaches to tackle these problems in manufacturing environments are analysed. Proactive scheduling is then focused on and several robustness and stability measures are presented. Previous research on scheduling robustness and stability is also reviewed and further research directions are suggested

    Algorithms for Scheduling Problems

    Get PDF
    This edited book presents new results in the area of algorithm development for different types of scheduling problems. In eleven chapters, algorithms for single machine problems, flow-shop and job-shop scheduling problems (including their hybrid (flexible) variants), the resource-constrained project scheduling problem, scheduling problems in complex manufacturing systems and supply chains, and workflow scheduling problems are given. The chapters address such subjects as insertion heuristics for energy-efficient scheduling, the re-scheduling of train traffic in real time, control algorithms for short-term scheduling in manufacturing systems, bi-objective optimization of tortilla production, scheduling problems with uncertain (interval) processing times, workflow scheduling for digital signal processor (DSP) clusters, and many more

    Scheduling in flexible robotic manufacturing cells

    Get PDF
    Cataloged from PDF version of article.The focus of this thesis is the scheduling problems arising in robotic cells which consist of a number of machines and a material handling robot. The machines used in such systems for metal cutting industries are highly flexible CNC machines. Although flexibility is the key term that affects the performance of these systems, the current literature ignores this. As a consequence, the problems considered in the current literature are either too limiting or the provided solutions are suboptimal for the flexible systems. This thesis analyzes different robotic cell configurations with different sources of flexibility. This study is the first one to consider operation allocation problems and controllable processing times as well as some design problems and bicriteria models in the context of robotic cell scheduling. Also, a new class of robot move cycles is defined, which is overlooked in the existing literature. Optimal solutions are provided for solvable cases, whereas complexity analyses and efficient heuristic algorithms are provided for the remaining problems.Gültekin, HakanPh.D

    Machine scheduling and Lagrangian relaxation

    Get PDF
    corecore