25,484 research outputs found

    On the value set of small families of polynomials over a finite field, I

    Get PDF
    We obtain an estimate on the average cardinality of the value set of any family of monic polynomials of Fq[T] of degree d for which s consecutive coefficients a_{d-1},..., a_{d-s} are fixed. Our estimate holds without restrictions on the characteristic of Fq and asserts that V(d,s,\bfs{a})=\mu_d.q+\mathcal{O}(1), where V(d,s,\bfs{a}) is such an average cardinality, \mu_d:=\sum_{r=1}^d{(-1)^{r-1}}/{r!} and \bfs{a}:=(a_{d-1},.., d_{d-s}). We provide an explicit upper bound for the constant underlying the \mathcal{O}--notation in terms of d and s with "good" behavior. Our approach reduces the question to estimate the number of Fq--rational points with pairwise--distinct coordinates of a certain family of complete intersections defined over Fq. We show that the polynomials defining such complete intersections are invariant under the action of the symmetric group of permutations of the coordinates. This allows us to obtain critical information concerning the singular locus of the varieties under consideration, from which a suitable estimate on the number of Fq--rational points is established.Comment: 30 page

    On the value set of small families of polynomials over a finite field, II

    Full text link
    We obtain an estimate on the average cardinality of the value set of any family of monic polynomials of Fq[T] of degree d for which s consecutive coefficients a_{d-1},...,a_{d-s} are fixed. Our estimate asserts that \mathcal{V}(d,s,\bfs{a})=\mu_d\,q+\mathcal{O}(q^{1/2}), where \mathcal{V}(d,s,\bfs{a}) is such an average cardinality, \mu_d:=\sum_{r=1}^d{(-1)^{r-1}}/{r!} and \bfs{a}:=(a_{d-1},...,a_{d-s}). We also prove that \mathcal{V}_2(d,s,\bfs{a})=\mu_d^2\,q^2+\mathcal{O}(q^{3/2}), where that \mathcal{V}_2(d,s,\bfs{a}) is the average second moment on any family of monic polynomials of Fq[T] of degree d with s consecutive coefficients fixed as above. Finally, we show that \mathcal{V}_2(d,0)=\mu_d^2\,q^2+\mathcal{O}(q), where \mathcal{V}_2(d,0) denotes the average second moment of all monic polynomials in Fq[T] of degree d with f(0)=0. All our estimates hold for fields of characteristic p>2 and provide explicit upper bounds for the constants underlying the \mathcal{O}--notation in terms of d and s with "good" behavior. Our approach reduces the questions to estimate the number of Fq--rational points with pairwise--distinct coordinates of a certain family of complete intersections defined over Fq. A critical point for our results is an analysis of the singular locus of the varieties under consideration, which allows to obtain rather precise estimates on the corresponding number of Fq--rational points.Comment: 36 page

    More Discriminants with the Brezing-Weng Method

    Get PDF
    The Brezing-Weng method is a general framework to generate families of pairing-friendly elliptic curves. Here, we introduce an improvement which can be used to generate more curves with larger discriminants. Apart from the number of curves this yields, it provides an easy way to avoid endomorphism rings with small class number
    • …
    corecore