2,034 research outputs found

    Managed ecosystems of networked objects

    Get PDF
    Small embedded devices such as sensors and actuators will become the cornerstone of the Future Internet. To this end, generic, open and secure communication and service platforms are needed in order to be able to exploit the new business opportunities these devices bring. In this paper, we evaluate the current efforts to integrate sensors and actuators into the Internet and identify the limitations at the level of cooperation of these Internet-connected objects and the possible intelligence at the end points. As a solution, we propose the concept of Managed Ecosystem of Networked Objects, which aims to create a smart network architecture for groups of Internet-connected objects by combining network virtualization and clean-slate end-to-end protocol design. The concept maps to many real-life scenarios and should empower application developers to use sensor data in an easy and natural way. At the same time, the concept introduces many new challenging research problems, but their realization could offer a meaningful contribution to the realization of the Internet of Things

    Federated Embedded Systems – a review of the literature in related fields

    Get PDF
    This report is concerned with the vision of smart interconnected objects, a vision that has attracted much attention lately. In this paper, embedded, interconnected, open, and heterogeneous control systems are in focus, formally referred to as Federated Embedded Systems. To place FES into a context, a review of some related research directions is presented. This review includes such concepts as systems of systems, cyber-physical systems, ubiquitous computing, internet of things, and multi-agent systems. Interestingly, the reviewed fields seem to overlap with each other in an increasing number of ways

    Selective Jamming of LoRaWAN using Commodity Hardware

    Full text link
    Long range, low power networks are rapidly gaining acceptance in the Internet of Things (IoT) due to their ability to economically support long-range sensing and control applications while providing multi-year battery life. LoRa is a key example of this new class of network and is being deployed at large scale in several countries worldwide. As these networks move out of the lab and into the real world, they expose a large cyber-physical attack surface. Securing these networks is therefore both critical and urgent. This paper highlights security issues in LoRa and LoRaWAN that arise due to the choice of a robust but slow modulation type in the protocol. We exploit these issues to develop a suite of practical attacks based around selective jamming. These attacks are conducted and evaluated using commodity hardware. The paper concludes by suggesting a range of countermeasures that can be used to mitigate the attacks.Comment: Mobiquitous 2017, November 7-10, 2017, Melbourne, VIC, Australi

    Whac-A-Mole: Smart Node Positioning in Clone Attack in Wireless Sensor Networks

    Get PDF
    Wireless sensor networks are often deployed in unattended environments and, thus, an adversary can physically capture some of the sensors, build clones with the same identity as the captured sensors, and place these clones at strategic positions in the network for further malicious activities. Such attacks, called clone attacks, are a very serious threat against the usefulness of wireless networks. Researchers proposed different techniques to detect such attacks. The most promising detection techniques are the distributed ones that scale for large networks and distribute the task of detecting the presence of clones among all sensors, thus, making it hard for a smart attacker to position the clones in such a way as to disrupt the detection process. However, even when the distributed algorithms work normally, their ability to discover an attack may vary greatly with the position of the clones. We believe this aspect has been greatly underestimated in the literature. In this paper, we present a thorough and novel study of the relation between the position of clones and the probability that the clones are detected. To the best of our knowledge, this is the first such study. In particular, we consider four algorithms that are representatives of the distributed approach. We evaluate for them whether their capability of detecting clone attacks is influenced by the positions of the clones. Since wireless sensor networks may be deployed in different situations, our study considers several possible scenarios: a uniform scenario in which the sensors are deployed uniformly, and also not uniform scenarios, in which there are one or more large areas with no sensor (we call such areas “holes”) that force communications to flow around these areas. We show that the different scenarios greatly influence the performance of the algorithms. For instance, we show that, when holes are present, there are some clone positions that make the attacks much harder to be detected. We believe that our work is key to better understand the actual security risk of the clone attack in the presence of a smart adversary and also with respect to different deployment scenarios. Moreover, our work suggests, for the different scenarios, effective clone detection solutions even when a smart adversary is part of the game

    Integration of multisensor hybrid reasoners to support personal autonomy in the smart home.

    Get PDF
    The deployment of the Ambient Intelligence (AmI) paradigm requires designing and integrating user-centered smart environments to assist people in their daily life activities. This research paper details an integration and validation of multiple heterogeneous sensors with hybrid reasoners that support decision making in order to monitor personal and environmental data at a smart home in a private way. The results innovate on knowledge-based platforms, distributed sensors, connected objects, accessibility and authentication methods to promote independent living for elderly people. TALISMAN+, the AmI framework deployed, integrates four subsystems in the smart home: (i) a mobile biomedical telemonitoring platform to provide elderly patients with continuous disease management; (ii) an integration middleware that allows context capture from heterogeneous sensors to program environmentÂżs reaction; (iii) a vision system for intelligent monitoring of daily activities in the home; and (iv) an ontologies-based integrated reasoning platform to trigger local actions and manage private information in the smart home. The framework was integrated in two real running environments, the UPM Accessible Digital Home and MetalTIC house, and successfully validated by five experts in home care, elderly people and personal autonomy
    • 

    corecore