307,377 research outputs found

    Modelling of self-similar teletraffic for simulation

    Get PDF
    Recent studies of real teletraffic data in modern computer networks have shown that teletraffic exhibits self-similar (or fractal) properties over a wide range of time scales. The properties of self-similar teletraffic are very different from the traditional models of teletraffic based on Poisson, Markov-modulated Poisson, and related processes. The use of traditional models in networks characterised by self-similar processes can lead to incorrect conclusions about the performance of analysed networks. These include serious over-estimations of the performance of computer networks, insufficient allocation of communication and data processing resources, and difficulties ensuring the quality of service expected by network users. Thus, full understanding of the self-similar nature in teletraffic is an important issue. Due to the growing complexity of modern telecommunication networks, simulation has become the only feasible paradigm for their performance evaluation. In this thesis, we make some contributions to discrete-event simulation of networks with strongly-dependent, self-similar teletraffic. First, we have evaluated the most commonly used methods for estimating the self-similarity parameter H using appropriately long sequences of data. After assessing properties of available H estimators, we identified the most efficient estimators for practical studies of self-similarity. Next, the generation of arbitrarily long sequences of pseudo-random numbers possessing specific stochastic properties was considered. Various generators of pseudo-random self-similar sequences have been proposed. They differ in computational complexity and accuracy of the self-similar sequences they generate. In this thesis, we propose two new generators of self-similar teletraffic: (i) a generator based on Fractional Gaussian Noise and Daubechies Wavelets (FGN-DW), that is one of the fastest and the most accurate generators so far proposed; and (ii) a generator based on the Successive Random Addition (SRA) algorithm. Our comparative study of sequential and fixed-length self-similar pseudo-random teletraffic generators showed that the FFT, FGN-DW and SRP-FGN generators are the most efficient, both in the sense of accuracy and speed. To conduct simulation studies of telecommunication networks, self-similar processes often need to be transformed into suitable self-similar processes with arbitrary marginal distributions. Thus, the next problem addressed was how well the self-similarity and autocorrelation function of an original self-similar process are preserved when the self-similar sequences are converted into suitable self-similar processes with arbitrary marginal distributions. We also show how pseudo-random self-similar sequences can be applied to produce a model of teletraffic associated with the transmission of VBR JPEG /MPEG video. A combined gamma/Pareto model based on the application of the FGN-DW generator was used to synthesise VBR JPEG /MPEG video traffic. Finally, effects of self-similarity on the behaviour of queueing systems have been investigated. Using M/M/1/∞ as a reference queueing system with no long-range dependence, we have investigated how self-similarity and long-range dependence in arrival processes affect the length of sequential simulations being executed for obtaining steady-state results with the required level of statistical error. Our results show that the finite buffer overflow probability of a queueing system with self-similar input is much greater than the equivalent queueing system with Poisson or a short-range dependent input process, and that the overflow probability increases as the self-similarity parameter approaches one

    An acceleration simulation method for power law priority traffic

    Get PDF
    A method for accelerated simulation for simulated self-similar processes is proposed. This technique simplifies the simulation model and improves the efficiency by using excess packets instead of packet-by-packet source traffic for a FIFO and non-FIFO buffer scheduler. In this research is focusing on developing an equivalent model of the conventional packet buffer that can produce an output analysis (which in this case will be the steady state probability) much faster. This acceleration simulation method is a further development of the Traffic Aggregation technique, which had previously been applied to FIFO buffers only and applies the Generalized Ballot Theorem to calculate the waiting time for the low priority traffic (combined with prior work on traffic aggregation). This hybrid method is shown to provide a significant reduction in the process time, while maintaining queuing behavior in the buffer that is highly accurate when compared to results from a conventional simulatio

    The pseudo-self-similar traffic model: application and validation

    Get PDF
    Since the early 1990¿s, a variety of studies has shown that network traffic, both for local- and wide-area networks, has self-similar properties. This led to new approaches in network traffic modelling because most traditional traffic approaches result in the underestimation of performance measures of interest. Instead of developing completely new traffic models, a number of researchers have proposed to adapt traditional traffic modelling approaches to incorporate aspects of self-similarity. The motivation for doing so is the hope to be able to reuse techniques and tools that have been developed in the past and with which experience has been gained. One such approach for a traffic model that incorporates aspects of self-similarity is the so-called pseudo self-similar traffic model. This model is appealing, as it is easy to understand and easily embedded in Markovian performance evaluation studies. In applying this model in a number of cases, we have perceived various problems which we initially thought were particular to these specific cases. However, we recently have been able to show that these problems are fundamental to the pseudo self-similar traffic model. In this paper we review the pseudo self-similar traffic model and discuss its fundamental shortcomings. As far as we know, this is the first paper that discusses these shortcomings formally. We also report on ongoing work to overcome some of these problems

    The Methods to Improve Quality of Service by Accounting Secure Parameters

    Full text link
    A solution to the problem of ensuring quality of service, providing a greater number of services with higher efficiency taking into account network security is proposed. In this paper, experiments were conducted to analyze the effect of self-similarity and attacks on the quality of service parameters. Method of buffering and control of channel capacity and calculating of routing cost method in the network, which take into account the parameters of traffic multifractality and the probability of detecting attacks in telecommunications networks were proposed. The both proposed methods accounting the given restrictions on the delay time and the number of lost packets for every type quality of service traffic. During simulation the parameters of transmitted traffic (self-similarity, intensity) and the parameters of network (current channel load, node buffer size) were changed and the maximum allowable load of network was determined. The results of analysis show that occurrence of overload when transmitting traffic over a switched channel associated with multifractal traffic characteristics and presence of attack. It was shown that proposed methods can reduce the lost data and improve the efficiency of network resources.Comment: 10 pages, 1 figure, 1 equation, 1 table. arXiv admin note: text overlap with arXiv:1904.0520

    Modelling Self-similar Traffic Of Multiservice Networks

    Get PDF
    Simulation modelling is carried out, which allows adequate describing the traffic of multiservice networks with the commutation of packets with the characteristic of burstiness. One of the most effective methods for studying the traffic of telecommunications systems is computer simulation modelling. By using the theory of queuing systems (QS), computer simulation modelling of packet flows (traffic) in modern multi-service networks is performed as a random self-similar process. Distribution laws such as exponential, Poisson and normal-logarithmic distributions, Pareto and Weibull distributions have been considered.The distribution of time intervals between arrivals of packages and the service duration of service of packages at different system loads has been studied. The research results show that the distribution function of time intervals between packet arrivals and the service duration of packages is in good agreement with the Pareto and Weibull distributions, but in most cases the Pareto distribution prevails.The queuing systems with the queues M/Pa/1 and Pa/M/1 has been studied, and the fractality of the intervals of requests arriving have been compared by the properties of the estimates of the system load and the service duration. It has been found out that in the system Pa/M/1, with the parameter of the form a> 2, the fractality of the intervals of requests arriving does not affect the average waiting time and load factor. However, when ≤2, as in the M/Pa/1 system, both considered statistical estimates differ.The application of adequate mathematical models of traffic allows to correctly assess the characteristics of the quality of service (QoS) of the network
    corecore